An improved theory of asymptotic unfoldings

Show simple item record

dc.contributor.author Murdock, James
dc.contributor.author Malonza, David M.
dc.date.accessioned 2025-07-11T08:15:13Z
dc.date.available 2025-07-11T08:15:13Z
dc.date.issued 2009-08-01
dc.identifier.citation Journal of differential equations, volume 247, issue 3, 2009, Pages 685-709, 2009 en_US
dc.identifier.issn 0022-0396
dc.identifier.uri https://www.sciencedirect.com/science/article/pii/S0022039609001910
dc.identifier.uri http://repository.seku.ac.ke/xmlui/handle/123456789/8111
dc.description https://doi.org/10.1016/j.jde.2009.04.014 en_US
dc.description.abstract An asymptotic unfolding of a dynamical system near a rest point is a system with additional parameters, such that every one-parameter deformation of the original system can be embedded in the unfolding preserving all properties that can be detected by asymptotic methods. Asymptotic unfoldings are computed using normal (and hypernormal) form methods. We present a simplified and improved method of computing such unfoldings that can be used in any normal form style. en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.title An improved theory of asymptotic unfoldings en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Dspace


Browse

My Account