Rh proteins and NH4(+)-activated Na+-ATPase in the Magadi tilapia (Alcolapia grahami), a 100% ureotelic teleost fish.

Show simple item record

dc.contributor.author Kavembe, Geraldine D.
dc.contributor.author Wood, Chris M.
dc.contributor.author Nawata, Michele C.
dc.contributor.author Wilson, Jonathan M.
dc.contributor.author Laurent, Pierre
dc.contributor.author Chevalier, Claudine
dc.contributor.author Bergman, Harold L.
dc.contributor.author Bianchini, Adalto
dc.contributor.author Maina, John N.
dc.contributor.author Johannsson, Ora E.
dc.contributor.author Bianchini, Lucas F.
dc.contributor.author Papah, Michael B.
dc.contributor.author Ojoo, Rodi O.
dc.date.accessioned 2015-02-02T12:40:11Z
dc.date.available 2015-02-02T12:40:11Z
dc.date.issued 2013-08-15
dc.identifier.citation The Journal of Experimental Biology 216, 2998-3007 en_US
dc.identifier.issn 0022-0949
dc.identifier.uri http://jeb.biologists.org/content/216/16/2998.long
dc.identifier.uri http://hdl.handle.net/123456789/803
dc.description doi: 10.1242/​jeb.078634 en_US
dc.description.abstract The small cichlid fish Alcolapia grahami lives in Lake Magadi, Kenya, one of the most extreme aquatic environments on Earth (pH ~10, carbonate alkalinity ~300 mequiv l−1). The Magadi tilapia is the only 100% ureotelic teleost; it normally excretes no ammonia. This is interpreted as an evolutionary adaptation to overcome the near impossibility of sustaining an NH3 diffusion gradient across the gills against the high external pH. In standard ammoniotelic teleosts, branchial ammonia excretion is facilitated by Rh glycoproteins, and cortisol plays a role in upregulating these carriers, together with other components of a transport metabolon, so as to actively excrete ammonia during high environmental ammonia (HEA) exposure. In Magadi tilapia, we show that at least three Rh proteins (Rhag, Rhbg and Rhcg2) are expressed at the mRNA level in various tissues, and are recognized in the gills by specific antibodies. During HEA exposure, plasma ammonia levels and urea excretion rates increase markedly, and mRNA expression for the branchial urea transporter mtUT is elevated. Plasma cortisol increases and branchial mRNAs for Rhbg, Rhcg2 and Na+,K+-ATPase are all upregulated. Enzymatic activity of the latter is activated preferentially by NH4+ (versus K+), suggesting it can function as an NH4+-transporter. Model calculations suggest that active ammonia excretion against the gradient may become possible through a combination of Rh protein and NH4+-activated Na+-ATPase function. en_US
dc.language.iso en en_US
dc.publisher Company of Biologists en_US
dc.subject high environmental ammonia en_US
dc.subject high alkalinity en_US
dc.subject ammonia transport en_US
dc.subject urea transport en_US
dc.subject gills en_US
dc.subject Na+,K+-ATPase en_US
dc.subject Alcolapia grahami en_US
dc.title Rh proteins and NH4(+)-activated Na+-ATPase in the Magadi tilapia (Alcolapia grahami), a 100% ureotelic teleost fish. en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Dspace


Browse

My Account