Abstract:
For planning and operation activities, accurate forecasting of demand is very important in sustaining the load demand in the electrical power system. Recently there has been increased use of renewable energy and unlike other sources of electricity like diesel generators, estimation of power production from renewable sources is uncertain. Therefore, reliable techniques for forecasting renewable energy and load demand are of paramount importance. Several forecasting techniques have been researched on in the past and are classified into; physical, statistical and AI techniques The proposed research involves forecasting integrated load and renewable energy (solar and wind) using Artificial Neural Network(ANN) and Enhanced Particle Swamp Optimization (EPSO) techniques. The output of this research is the predicted netload. The analysis of the results depicts ANN_EPSO as a reliable method for forecasting renewable energy and Load demand.