Please use this identifier to cite or link to this item: https://repository.seku.ac.ke/handle/123456789/8111
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMurdock, James-
dc.contributor.authorMalonza, David M.-
dc.date.accessioned2025-07-11T08:15:13Z-
dc.date.available2025-07-11T08:15:13Z-
dc.date.issued2009-08-01-
dc.identifier.citationJournal of differential equations, volume 247, issue 3, 2009, Pages 685-709, 2009en_US
dc.identifier.issn0022-0396-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022039609001910-
dc.identifier.urihttp://repository.seku.ac.ke/xmlui/handle/123456789/8111-
dc.descriptionhttps://doi.org/10.1016/j.jde.2009.04.014en_US
dc.description.abstractAn asymptotic unfolding of a dynamical system near a rest point is a system with additional parameters, such that every one-parameter deformation of the original system can be embedded in the unfolding preserving all properties that can be detected by asymptotic methods. Asymptotic unfoldings are computed using normal (and hypernormal) form methods. We present a simplified and improved method of computing such unfoldings that can be used in any normal form style.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.titleAn improved theory of asymptotic unfoldingsen_US
dc.typeArticleen_US
Appears in Collections:School of Science and Computing (JA)

Files in This Item:
File Description SizeFormat 
Murdock_An improved theory of asymptotic unfoldings.pdfabstract3.56 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.