Please use this identifier to cite or link to this item: https://repository.seku.ac.ke/handle/123456789/6353
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMutwiri, Robert M.-
dc.date.accessioned2021-10-07T11:50:47Z-
dc.date.available2021-10-07T11:50:47Z-
dc.date.issued2016-03-
dc.identifier.citationJournal Of Humanities And Social Science (IOSR-JHSS) Volume 21, Issue 3, Ver. II, PP 70-77en_US
dc.identifier.issn2279-0837-
dc.identifier.issn2279-0845-
dc.identifier.urihttps://www.iosrjournals.org/iosr-jhss/papers/Vol.%2021%20Issue3/Version-2/K2103027077.pdf-
dc.identifier.urihttp://repository.seku.ac.ke/handle/123456789/6353-
dc.descriptionDOI: 10.9790/0837-2103027077en_US
dc.description.abstractThis paper addresses the problem of monitoring the infant and child mortality from point referenced data. Indicators of the determinants of child survival based on Mosley and Chen framework are derived and used to model the spatial distribution of infant mortality. Spatial generalised linear model which assumes a Bernoulli dis-tribution to model the indicator determinants of child survival. A smooth map of the predicted values at both sampled and the un sampled is produced. We find evidence of spatial autocorrelation in the data and the smooth map indicates the hot spot of infant mortality where more resources are needed to attain the millennium develop-ment goal fouren_US
dc.language.isoenen_US
dc.subjectInfant mortalityen_US
dc.subjectIndicatorsen_US
dc.subjectGeostatisticsen_US
dc.subjectSpatial Generalized Linear modelsen_US
dc.subjectBayesian Spatial Modellingen_US
dc.subjectMappingen_US
dc.titleSpatial modelling and mapping of socio-demographic determinants of infant mortality in Kenyaen_US
dc.typeArticleen_US
Appears in Collections:School of Science and Computing (JA)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.