Please use this identifier to cite or link to this item: https://repository.seku.ac.ke/handle/123456789/6333
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGembo, Robert O.-
dc.contributor.authorAoyi, Ochieng-
dc.contributor.authorMajoni, Stephen-
dc.contributor.authorEtale, Anita-
dc.contributor.authorOdisitse, Sebusi-
dc.contributor.authorKing’ondu, Cecil K.-
dc.date.accessioned2021-09-01T08:11:50Z-
dc.date.available2021-09-01T08:11:50Z-
dc.date.issued2021-08-24-
dc.identifier.citationAAS Open Research, 2021, 4:43en_US
dc.identifier.issn2515-9321-
dc.identifier.urihttps://d2105gzef9joy6.cloudfront.net/manuscripts/14371/e89b9e41-a90c-4196-b56d-49c51c82e024_13249_-_cecil_kingondu.pdf?doi=10.12688/aasopenres.13249.1&numberOfBrowsableCollections=3&numberOfBrowsableInstitutionalCollections=0&numberOfBrowsableGateways=6-
dc.identifier.urihttp://repository.seku.ac.ke/handle/123456789/6333-
dc.descriptionhttps://doi.org/10.12688/aasopenres.13249.1en_US
dc.description.abstractBackground: The removal of textile wastes is a priority due to their mutagenic and carcinogenic properties. In this study, bismuth oxyhalide was used in the removal of methylene blue (MB) which is a textile waste. The main objective of this study was to develop and investigate the applicability of a bismuth oxyhalide (BiOBrzI(1-z)) solid solutions in the photodegradation of MB under solar and ultraviolet (UV) light irradiation. Methods: Bismuth oxyhalide (BiOBrzI(1-z)) (0 ≤ z ≤ 1) materials were successfully prepared through the hydrothermal method. Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), X-ray diffractometer (XRD), and scanning electron microscope (SEM) were used to determine the surface area, microstructure, crystal structure, and morphology of the resultant products. The photocatalytic performance of BiOBrzI(1-z) materials was examined through methylene blue (MB) degradation under UV light and solar irradiation. Results: The XRD showed that BiOBrzI(1-z) materials crystallized into a tetragonal crystal structure with (102) peak slightly shifting to lower diffraction angle with an increase in the amount of iodide (I-). BiOBr0.6I0.4 materials showed a point of zero charge of 5.29 and presented the highest photocatalytic activity in the removal of MB with 99% and 88% efficiency under solar and UV irradiation, respectively. The kinetics studies of MB removal by BiOBrzI(1-z) materials showed that the degradation process followed nonlinear pseudo-first-order model indicating that the removal of MB depends on the population of the adsorption sites. Trapping experiments confirmed that photogenerated holes (h+) and superoxide radicals (•O2−) are the key species responsible for the degradation of MB. Conclusions: This study shows that bismuth oxyhalide materials are very active in the degradation of methylene blue dye using sunlight and thus they have great potential in safeguarding public health and the environment from the dye’s degradation standpoint. Moreover, the experimental results agree with nonlinear fitting.en_US
dc.language.isoenen_US
dc.publisherF1000Researchen_US
dc.subjectHydrothermalen_US
dc.subjectFlower-likeen_US
dc.subjectBandgapen_US
dc.subjectThermal effecten_US
dc.subjectSolaren_US
dc.subjectPhotocatalysisen_US
dc.subjectUltravioleten_US
dc.subjectSuperoxideen_US
dc.titleSynthesis of bismuth oxyhalide (BiOBrzI(1-z)) solid solutions for photodegradation of methylene dye [version 1; peer review: awaiting peer review]en_US
dc.typeArticleen_US
Appears in Collections:School of Science and Computing (JA)

Files in This Item:
File Description SizeFormat 
Gembo_Synthesis of bismuth oxyhalide....pdfabstract74.09 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.