Please use this identifier to cite or link to this item: https://repository.seku.ac.ke/handle/123456789/6275
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMbala, Simon-
dc.contributor.authorManene, M. M.-
dc.contributor.authorOttieno, J. A. M.-
dc.date.accessioned2021-06-21T12:27:16Z-
dc.date.available2021-06-21T12:27:16Z-
dc.date.issued2019-
dc.identifier.citationInternational Journal of Statistics and Applied Mathematics; 4(4): 50-55en_US
dc.identifier.issn2456-1452-
dc.identifier.urihttps://www.mathsjournal.com/pdf/2019/vol4issue4/PartA/4-4-10-124.pdf-
dc.identifier.urihttp://repository.seku.ac.ke/handle/123456789/6275-
dc.description.abstractWhen collecting sensitive information on abortion, drug addiction, examination dishonesty and tax evasion among others, many researchers use direct questioning which may not yield valid data. This is because respondents fear embarrassment and victimization. In this study we have formulated a Symmetric Truth Detection Model which uses two randomization devises to protect the privacy of respondents leading to a more honest response. This model is more efficient than the earlier models namely the Asymmetric Truth detection Models.en_US
dc.language.isoenen_US
dc.subjectRandomized responseen_US
dc.subjectsymmetricen_US
dc.subjectasymmetricen_US
dc.subjectsensitive questionsen_US
dc.subjectsensitive attributeen_US
dc.subjectrandomization deviseen_US
dc.subjecttruth detectionen_US
dc.titleSymmetric truth detection model: A randomized response approachen_US
dc.typeArticleen_US
Appears in Collections:School of Science and Computing (JA)

Files in This Item:
File Description SizeFormat 
Mbala_Symmetric truth detection model.pdfAbstract4.15 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.