Please use this identifier to cite or link to this item: https://repository.seku.ac.ke/handle/123456789/4312
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRotich, John K.-
dc.contributor.authorBitok, Jacob K.-
dc.contributor.authorMaritim, Simeon K.-
dc.contributor.authorKirui, Wesley-
dc.date.accessioned2019-01-14T09:20:52Z-
dc.date.available2019-01-14T09:20:52Z-
dc.date.issued2014-10-
dc.identifier.citationInternational Journal of Scientific & Engineering Research, Volume 5, Issue 10en_US
dc.identifier.issn2229-5518-
dc.identifier.urihttps://www.researchgate.net/publication/277008413_Crank-Nicholson-Du_Fort_And_Frankel-Lax-Friedrich's_Hybrid_Finite_Difference_Schemes_Arising_From_Operator_Splitting_For_Solving_2-Dimensional_Heat_Equation-
dc.identifier.urihttp://repository.seku.ac.ke/handle/123456789/4312-
dc.description.abstractWe develop hybrid finite difference schemes arising from operator splitting to solve 2-D heat equations. We develop CrankNicholson-Du Fort and Frankel-Lax-Friedrich’s method. We determine that the hybrid Crank-Nicholson-Du Fort and Frankel-Lax-Friedrich’s method is the more accurate than the pure Cranck-Nicholson Scheme. This method is also unconditionally stable because they are CrankNicholson based. The methods that involve Du Fort and Frankel discretization are three-level.en_US
dc.language.isoenen_US
dc.publisherIJSER Publicationsen_US
dc.subjectCrank-Nicholsonen_US
dc.subjectDu-Fort and Frankelen_US
dc.subjectLax-Friendrichen_US
dc.subjectHybrid Finite Difference Schemeen_US
dc.subjectOperator splittingen_US
dc.subject2-Dimensional heat equationen_US
dc.titleCrank-Nicholson-Du Fort and Frankel-Lax-Friedrich's hybrid finite difference schemes arising from operator splitting for solving 2-dimensional heat equationen_US
dc.typeArticleen_US
Appears in Collections:School of Science and Computing (JA)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.