Please use this identifier to cite or link to this item: https://repository.seku.ac.ke/handle/123456789/1063
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWali, Augustus N.-
dc.date.accessioned2015-03-17T12:38:44Z-
dc.date.available2015-03-17T12:38:44Z-
dc.date.issued2009-
dc.identifier.citationMathematics Applied in Science and Technology Volume 1, Number 1 (2009), pp. 75-80en_US
dc.identifier.urihttp://www.ripublication.com/Volume/mastv1n1.htm-
dc.identifier.urihttp://repository.seku.ac.ke/handle/123456789/1063-
dc.description.abstractThe geometry of anti-invariant submanifolds of a complex space form with positive definite metric was studied by Chen-Ogiue [2], Yano-Kon [6] and others. In this paper we study the geometry of indefinite anti-invariant submanifolds of an indefinite complex space. We found that if the submanifold is a timelike, spacelike or mixedlike totally geodesic then it is an Einstein submanifold. Moreover, if the submanifold is a proper indefinite anti- invariant Einstein submanifold then it is a totally geodesic submanifold of c constant curvature -. 4en_US
dc.language.isoenen_US
dc.publisherResearch India Publicationsen_US
dc.subjectAnti-invariant submanifolden_US
dc.subjectComplex space formen_US
dc.subjectTotally geodesicen_US
dc.titleIndefinite Anti-Invariant Submanifolds of An Indefinite Complex Space Formen_US
dc.typeArticleen_US
Appears in Collections:School of Science and Computing (JA)

Files in This Item:
File Description SizeFormat 
Wali_Indefinite anti-invariant submanifolds of an indefinite complex space form.pdfabstract463.32 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.