Please use this identifier to cite or link to this item: https://repository.seku.ac.ke/handle/123456789/1062
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWali, Augustus N.-
dc.date.accessioned2015-03-17T12:34:48Z-
dc.date.available2015-03-17T12:34:48Z-
dc.date.issued2009-
dc.identifier.citationMathematics Applied in Science and Technology Volume 1,Number 1(2009), pp. 1-7en_US
dc.identifier.urihttp://www.ripublication.com/Volume/mastv1n1.htm-
dc.identifier.urihttp://repository.seku.ac.ke/handle/123456789/1062-
dc.description.abstractChen-Ogiue [1] showed that if M is an n-dimensional compact totally real minimal submanifold immersed inMn (c) then M is totally geodesic 'fS n(n +1) 1 < c. 4(2n -1) The purpose of this manuscript is to study the geometry of an n- dimensional totally real maximal spacelike submanifold M immersed in an indefinite complex space form M(c),c 1:- O. We have generalized Chen- Ogiue's result by showing that if M is an n-dimensional compact totally real maximal spacelike submanifold of M;+P(c),C1:-0, thenS~(n+1)(n+2p)c. 4(2n+4p-l) Moreover, if S is less than (n +1)(n+2p) c then M is totally geodesic.en_US
dc.language.isoenen_US
dc.publisherResearch India Publicationsen_US
dc.subjectTotally real spacelike submanifolden_US
dc.subjectIndefinite Complex space formen_US
dc.titleOn Totally Real Maximal Spacelike Submanifolds of an Indefinite Complex Space Formen_US
dc.typeArticleen_US
Appears in Collections:School of Science and Computing (JA)

Files in This Item:
File Description SizeFormat 
Wali_On totally real maximal spacelike submanifolds of an indefinite complex space form.pdfabstract556.73 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.