

Abstract

Cholera, a water-borne disease characterized by intense watery diarrhea, affects people in the regions with poor hygiene and untreated drinking water. This disease remains a menace to public health globally and it indicates inequity and lack of community development. In this research, SIQR-B mathematical model based on a system of ordinary differential equations is formulated to study the dynamics of cholera transmission with health education campaign and treatment through quarantine as controls against epidemic in Kenya. The effective basic reproduction number is computed using the next generation matrix method. The equilibrium points of the model are determined and their stability is analysed. Results of stability analysis show that the disease free equilibrium is both locally and globally asymptotically stable $R_0 < 1$ while the endemic equilibrium is both locally and globally asymptotically stable $R_0 > 1$. Numerical simulation carried out using MATLAB software shows that when health education campaign is efficient, the number of cholera infected individuals decreases faster, implying that health education campaign is vital in controlling the spread of cholera disease.