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Insect frass fertilizer upregulates
maize defence genes and
resistance against an invasive
herbivore pest
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Dennis Beesigamukama?, Andre Kessler*, Sevgan Subramanian?, Thomas Dubois?,
Sunday Ekesi® & Chrysantus M. Tanga®

The black soldier fly frass fertilizer (BSFFF) has gained global attention as a multipurpose input for
soil fertilization and pest and disease management. However, there are limited studies that have
examined its effects on insect pest resistance and the underlying mechanisms. We investigated the
impact of amending soil with BSFFF on maize growth, defense gene expression and resistance to a
polyphagous insect herbivore, Spodoptera frugiperda (Lepidoptera: Noctuidae) through larval feeding
assay. Maize growth was evaluated by measuring plant height, chlorophyll concentration, and
biomass accumulation in soils amended with BSFFF, synthetic fertilizers (Di-ammonium phosphate
and Calcium ammonium nitrate) and unfertilized soils at various growth stages. Larval feeding assays
were conducted using leaf discs from maize plants grown in different amended soils. The expression
level of three maize defense genes: pathogenesis related protein 5 (pr-5), maize proteinase inhibitors
(mpi), and lipoxygenase 3 (lox-3) were analyzed using quantitative polymerase chain reaction (QPCR)
while yield was assessed through a field trial over two cropping seasons. Maize plants grown in BSFFF
amended soils showed 30% more growth, higher chlorophyll, 0.93-2.86 t ha~* higher yield, and 48%
better nitrogen use efficiency than from those in synthetic or unfertilized soils. Moreover, S. frugiperda
larvae consumed significantly less leaf tissue from maize plants grown in BSFFF amended soils than
synthetically fertilized and non-fertilized soils. Maize defense genes pr-5, mpi, and lox-3 were highly
expressed both constitutively and inductively in maize planted in BSFFF amended soils compared

to those grown in synthetically fertilized and non-fertilized soils. We observed a significant negative
correlation between mpi gene expression and larval feeding, suggesting its role in maize resistance.
Our results show that soil amendment with BSFFF strengthens plant defense systems and positively
impacts plant growth and yield, contributing to increased agricultural productivity and sustainability.

Keywords Black soldier fly frass fertilizer, Maize, Insect resistance, Spodoptera frugiperda, Plant
performance, Plant defense genes

The intensification of agriculture to meet the needs of a rapidly growing population is a continuous process
that demands multi-dimensional approaches to improve crop yield, soil fertility, and resistance to insect pests.
Soil amendments using organic and inorganic fertilizers are common strategies for replenishing depleted
soil nutrients, thus improving soil fertility, plant growth and crop production'>. However, the effectiveness
of these amendments varies depending on the types and application strategies. For instance, revitalizing soil
with inorganic fertilizers temporarily improves soil fertility, requiring multiple applications during growing
seasons making it costly*. Additionally, continuous use of synthetic fertilizers has adverse impacts on human and
environmental health, and can increase plant susceptibility to pathogens and herbivore pests®™. For example,
Culliney & Pimentel'© observed that plants grown in soils highly fertilized with inorganic nitrogen had increased
populations of mites and aphids. This implies that soil amendment practices that improve soil fertility and plant
growth do not necessarily increase plants’ capacity to resist herbivore pests.
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Unlike inorganic fertilization, organic amendments maintain long-term enhancement of soil fertility!. In
addition to its cost-effectiveness, organic fertilizers improve soil chemical properties by increasing availability and
uptake of essential nutrients for crop growth and production®!"!2. Organic soil amendments also improve soil
structure, reduce erosion while strengthening its water holding capacity!®. They further enhance soil biological
quality by promoting beneficial macro- and micro-biotic organisms such as nematodes, springtails, earthworms,
ground beetles, bacteria, fungi, and protozoa!*~'®. This underscores the ability of organic soil amendments
to restore overall soil health by improving its physical, chemical, and biological properties. Given that plant
defenses are intrinsically linked to soil health, enhancing these properties through organic amendments may
positively impact soil and plant health®*17-1°, Indeed, soil amendment with organic fertilizer has been shown
to improve plant resistance to herbivore pests®?’. For instance, European corn borer, Ostrinia nubilalis Hubner
(Lepidoptera: Crambidae) female moths oviposited more on plants grown in chemically fertilized soils than
those organically fertilized®. These studies suggest that not all soil amendments improve plant defense against
herbivore pests*"2.

The use of black soldier fly (Hermetia illucens, L., Diptera: Stratiomyidae) frass fertilizer (BSFFF) as a novel
approach for organic soil amendment is gaining global traction due to its pronounced agroecological benefits. It
is generated by treating biodegradable waste with black soldier fly larvae which converts organic waste into safe
and enriched organic fertilizer*>?*. Like many other organic fertilizers, BSFFF positively impacts soil chemical
properties by enhancing nutrient abundance and adsorption in the soil®. In addition, BSFFF strengthens soil
biological quality by increasing populations of beneficial soil microbiota and improves soil physical properties
by increasing organic matter and porosity?>?®. Apart from being naturally derived and cost-effective, BSFFF has
been shown to interfere with plant-pathogen interactions by reducing the spread of soil-borne fungal pathogens
such as Fusarium oxysporum and Rhizoctonia solani*”**and aboveground and soil-dwelling pests**°. However,
its impact in plant-insect interactions, particularly invasive herbivore pests like fall armyworm (Spodoptera
frugiperda (Lepidoptera: Noctuidae)), remains largely unexplored.

Spodoptera frugiperda is a highly destructive phytophagous pest, native to Americas but invasive in
Africa® Asia® and Australia®. It represents one of the major global threats to food security, attacking over
80 different agricultural crops including cereal grains (maize, rice, sorghum, groundnut, soybean, millet and
cotton), vegetables (cabbage, tomato and potato) and legumes, thus threatening the livelihood of farmers*-%7.
The use of agrochemical strategies to control S. frugiperda has proven ineffective due to ecological hazards and
the rapid development of pest resistance’**’. Ecologically sound pest management strategies that involve less
synthetic chemical inputs and emphasize nature-based approaches, including the exploitation of plant resistance,
offer a promising solution for mitigating the economic impacts of this pest®.

Generally, plants employ a diverse array of defense genes that are upregulated or downregulated depending
on attacking insect species and nutrient availability*"*2. Nitrogen, a key soil nutrient, plays a central role in
plant growth and defense expression. Apparently, an increase in inorganic nitrogen negatively impacts plant
physical and chemical defenses**~%°. Lu et al.® demonstrated how the quality and quantity of nitrogen fertilizers
significantly affected gene expression under organic and inorganic fertilization. Similarly, Kavroulakis et al.*’
and Tenea et al.* found that plants grown in organically amended soils expressed more defense genes than those
grown in conventionally amended soils. Since plant defense response and soil management are intrinsically
dependent*’soil amendments that influence plant physiological and biochemical components play a critical role
in enhancing innate plant defenses against herbivore pests. Therefore, given that BSFFF stimulates soil quality
and beneficial microorganisms®®it has the potential to enhance both acquired and induced systemic plant
resistance.

Numerous studies have investigated the impact of soil amendments with BSFFF on nutrient availability, plant
growth, and resistance to pests?>346. However, little is known about the effects of soil amendment with BSFFF
on maize resistance to the invasive S. frugiperda. This study, therefore aimed to investigate how BSFFF amended,
synthetically fertilized and unfertilized soils affect the expression of plant defense-related genes. In addition, we
evaluated direct plant resistance through larval feeding assays. To capture agronomic outcomes at the field level,
we compared maize yields across the three soil treatments. We hypothesized that BSFFF amended soils enhance
expression of plant defense genes, thereby increasing resistance to herbivore pests while promoting plant growth
and yield.

Materials and methods

Plants and fertilizers

Maize seeds (SC Duma 43) were obtained from Simlaw seeds Ltd, Nairobi, Kenya. The experiments were
carried out using two types of fertilizers: organic fertilizer (BSFFF) and synthetic fertilizers, specifically Calcium
ammonium nitrate (CAN) and Di-ammonium phosphate (DAP). The BSFFF was obtained from a BSF colony
at the Animal Rearing and Containment Unit (ARCU) at icipe, while the synthetic fertilizers were obtained
from Kenya Farmers Association Ltd, Nairobi, Kenya. The BSFFF was produced upon feeding black soldier fly
larvae on brewery spent grain sourced from Kenya Breweries Ltd, Nairobi, Kenya, and composted following the
procedure outlined by Beesigamukama et al.?.

Insects

Spodoptera frugiperda moths were reared in 80x60x 120 cm oviposition cages at the ARCU of icipe, Nairobi,
Kenya. The cages were provided with three-week-old maize plants for adult moths to oviposit on. After two
days, eggs were collected and transferred to rearing jars (1000 ml with steel-infused lids to allow airflow), where
they were incubated until hatching. For all experiments that required neonates, one-day-old neonates were
used. Rearing conditions were maintained at 25+2 °C, 72+ 5% relative humidity (RH), and a 12:12-hour light-
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dark photoperiod. Second-generation insects were used in all experiments and were mixed with field-collected
colonies every two months to maintain their biological characteristics and prevent genetic degradation'”.

Laboratory and greenhouse experiments

Laboratory and greenhouse experiments were conducted at Duduville Campus (1.2921° S, 36.8219° E; 1616 m
above sea level), of the International Centre of Insect Physiology and Ecology (icipe) located at Nairobi, Kenya.
Maize seeds were individually sown in 5 L plastic pots in a greenhouse under optimum conditions (252 °C,
72+5% RH; 12 L:12D photoperiod). For soil amendments, BSFFF was mixed with soil at a 1:3 ratio. Five days
after planting, 10 g of DAP was applied to each pot with synthetic fertilizer treatment. As a top dressing, 10 g of
CAN was added to each pot of synthetic fertilizer treatment 7 days after germination. Soil with no amendments
was used as the control. Pots used for the experiment were thoroughly cleaned using 70% ethanol and household
bleach (Jik) to prevent cross-contamination. Each 5 L pot was half-filled with fresh soil mixed with the different
treatments and arranged in a randomized complete block design with 10 replicates per treatment. Maize
seedlings were placed 70 cm apart and watered once a day with 0.2 L until they were four weeks old for use in
the experiments.

Maize plant growth parameters were assessed by continuously measuring plant height and chlorophyll
concentration weekly for four weeks after germination. Plant height was measured by positioning a tape measure
from the soil surface to the arch of the uppermost leaf that had at least halfway emerged from the whorl region of
the shoot. Maize chlorophyll concentration was recorded by measuring the average of the three newly and fully
formed leaf using SPAD-502 chlorophyll meter (Konica Minolta corporation, Ltd, Osaka, Japan)*.

At the end of the experiment (four weeks), biomass accumulation was assessed by measuring dry shoot
and root weight through destructive sampling. Maize plants were cut above the soil level, oven-dried at 80 °C
for 48 h, and weighed afterwards for shoot weight. Similarly, below-ground parts of the maize plants were cut,
cleaned with water to remove attached soil particles, dried in an oven at 80 °C for 48 h, and then weighed to
determine root weight.

Gene expression

To determine the effects of soil amendments on gene expression, the pathogenesis related protein 5 (pr-5), maize
proteinase inhibitors (mpi), and lipoxygenase 3 (lox-3) genes were quantified using qRT-PCR. For constitutive
defense genes, 1 g of undamaged, newly developed leaf tissue was cut from maize plants grown in soil amended
with BSFFFE, synthetic fertilizer and non-fertilized soil. The leaf tissue was then placed into 2.0 mL Eppendorf
tubes, freeze-dried using liquid nitrogen, and stored at -80 °C for later RNA extraction. To further understand
the effect of soil amendments on induced defense genes, another set of maize plants were exposed to ten S.
frugiperda neonates for 24 h. Afterwards, 1 g of the newly developed leaf tissue of herbivore damaged maize plant
from each of the soil treatments was cut, placed into 2.0 mL Eppendorf tubes, freeze-dried in liquid nitrogen,
and stored at -80 °C for later RNA extraction.

RNA extraction and cDNA synthesis

For sample processing, 100 mg of freeze-dried leaf tissue from each treatment was cut and placed into 2 mL
Epperdorf tubes with glass beads (BioSpec Products Inc., Bartlesville, Oklahoma, USA) and mechanically
homogenized using a Tissue Lyser II (Qiagen Retsch GmbH, Hannover, Germany). Total RNA was extracted
using ISOLATE II RNA Mini Kit (Meridian Bioscience, UK) following the manufacturer’s instructions. DNAse
treatment was done before elution to clear all DNA contaminants and the resultant RNA concentration and purity
was determined using a Nanodrop 2000/2000c spectrophotometer (Thermo Fischer Scientific, Wilmington,
USA), and samples were stored at -80 °C for downstream processes. Complementary DNA (cDNA) synthesis
was performed using the High-Capacity cDNA Reverse Transcription kit (Applied Biosystems, Waltham, USA)
following manufacturer’s instructions. Into a microcentrifuge tube, a 20 uL reaction mix consisting of 10X RT
buffer, 8 mM dNTP mix, 0.5 pmol pL’l RT randoms primers, 45 ng uL~! of total RNA, 5 U/ pL MultiScribe™
Reverse Transcriptase and nuclease free water were added. The reactions were set up in a Nexus Mastercycler
gradient (Eppendorf, Hamburg, Germany), under the following thermal cycling conditions: initial activation for
10 min at 25 °C, cDNA synthesis for 120 min at 37 °C, the Reverse Transcriptase inactivation at 85 °C for 5 min,
then a final holding step at 4°C*7%1,.

gPCR analyses

The specific maize defense primers (pr-5, mpi, and lox-3) were selected based on those previously reported by
Stratton et al.*2. The specific primers were designed using Primer 3.0 software hosted by NCBI (https://www.n
cbi.nlm.nih.gov/tools/primer-blast/) (Table 1). Quantitative PCR (qQPCR) was performed using a QuantStudio
5 Real-Time System (Thermo Fisher Scientific, Waltham, USA). The reactions were all in triplicates and a
minimum of 4 biological replicates. These were set up in 10 pL final reaction volume consisting of 5 pL of
SensiFAST SYBR® Hi-ROX Kit (Meridian Bioscience, London, UK), 0.5 pmol pL[' 1 of each primer, 2.5 pL of
cDNA template, and 1.5 uL of nuclease free water. The qPCR cycling conditions consisted of initial activation of
95 °C for 2 min; followed by continuous 40 cycles at 95 °C for 15 s, annealing for 45 s, and extension and plate
reading at 72 °C for 30 s. Beta tubulin was used as the reference gene to normalize the expression of target genes
of interest. Relative gene expression was determined using the delta-delta Ct (2"24%) method™2.

Larval feeding

To evaluate the influence of soil amendments on insect feeding, larval feeding assays were conducted on
undamaged and herbivore-damaged maize plants. One leaf disc of 2.0 cm diameter was cut from a newly formed
leaf of maize plants grown in soil amended with BSFFEF, synthetic fertilizer and non-fertilized soil. The newly
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Primer | Sequence Target gene Accession No.
pr5-F GCACCAACAATGGCCGC pathogenesis related protein 5 U82201.1
pr5-R | TAGCCGTCGATGACCGAGAT pathogenesis related protein 5 '
mpi-F | TGGTGACCTACACGCGAAC maize proteinase inhibitor X78988
mpi-R | GCCATTAGCTAGGATCGGCAT maize proteinase inhibitor
lox-3-R | ATCACCGCGTGCTTTTCAG lipoxygenase 3

AF149803.1
lox-3-F | CACCATCACGGCGGAGACAT lipoxygenase 3
B-tub-F | CTACCTCACGGCATCTGCTATGT | beta tubulin

NM001111987.1
B-tub-R | GTCACACACACTCGACTTCACG | beta tubulin

Table 1. Primers of defense-related genes for maize plant and internal reference gene.

formed leaves are known to contain high levels of defense compounds in maize®. The leaf discs were then placed
in 30 mL clear plastic cups containing agar medium (Technical Agar #3) to maintain the physiological state. Ten
naive neonates of S. frugiperda were introduced into the 30 mL small cup containing a maize leaf disc from each
treatment group. Afterwards, the small cups were gently sealed with parafilm paper to prevent neonates from
escaping, and tiny holes were made using a thin needle at the cup lid to allow air circulation. The neonates were
allowed to feed on the leaf discs for 24 h.

To determine the relationship between herbivore-damaged responses and soil amendments, maize plants
were exposed to 10 S. frugiperda neonates for 24 h. Afterwards, 2.0 cm diameter leaf discs were cut from newly
formed leaf of the exposed maize plants grown in all soil treatments as described in the above constitutive larval
feeding assay. Six unique treatments were established, involving S. frugiperda neonates feeding on leaf discs from
plants grown in soil amended with BSFFE, synthetic fertilizer and non-fertilized soils, for both constitutive and
induced feeding responses. Each treatment was replicated nine times. Images of the leaf discs were taken, and
the area fed on each leaf disc calculated using Image] software!l- 55,

Gene expression and larval feeding

To examine the relationship between the expression of anti-chewing gene (mpi) and larval feeding®*Pearson’s
correlation analysis was performed, and a scatter plot was constructed. The average feeding by S. frugiperda
neonates on both damaged and undamaged plants was correlated with the expression levels of induced and
constitutive mpi defense genes, respectively. Each treatment included four biological replicates.

Field experiments

Field experiments were conducted for two growing seasons; April to September 2023 and October 2023 to
March 2024 at the Kenyatta University Teaching and Demonstration Farm (1°10'59” S, 36°55'34" E; 1580 m
above sea level) in Kiambu County, Kenya. This region experiences bimodal rainfall, with an average annual
precipitation of approximately 925 mm and mean monthly temperatures ranging from 21 to 28 °C (www.meteo.
go.ke). The short rainy season often starts from March to June, while the long rainy season begins in October
and extends to January. During the experimental periods, cumulative rainfall totals were 246 mm and 278 mm
for the short and long rainy seasons, respectively. The treatments included: (i) BSFFF amended soil, (ii) synthetic
fertilizer applied at a rate equivalent to 60 kg N hal"[!, and (iii) an unfertilized control soil. To eliminate nutrient
limitations from either organic or synthetic fertilizer, phosphorus (P) [supplied as triple super phosphate — TSP
(46% P,0.)] and potassium (K) [supplied as muriate of potash (60% K,0)] were obtained from Kenya Farmers’
Association and applied at uniform rates of 60 kg P hal"!! and 50 kg K hal" [1, respectively*”. For organic fertilizers
treatment, additional inorganic P and K were applied as top up to the nutrients content already present in the dry
matter, used to supply the required N, ensuring equivalent nutrient supply across treatments™’.

The maize variety SC Duma 43 was used as the test crop. The experiment followed a randomized complete
block design (RCBD) with three replicates. Each plot measured 4 x4 m (m) with border widths of 0.5 m and 1 m
between the plots and blocks, respectively®. The TSP fertilizer was applied at planting, while urea and muriate of
potash were applied in two equal splits: 50% at 4 weeks after planting and another 50% at 7 weeks after planting.
Weeding was conducted three times using a hand hoe, and all plots were managed following standard agronomic
practices up to crop maturity. Grain yield data was collected at the harvesting period from each plot area after
all the ears had fully dried. Maize plants in the harvested area were cut at ground level and their ears threshed
to determine grain and residue weights using a weighing scale. Grain samples were taken to the laboratory and
air-dried to 12.5% moisture content for determination of grain yields per plot and on a hectare basis (t hal"[1).
Agronomic nitrogen use efficiency was determined following the method of Baligar et al.*.

Data analyses

Prior to statistical analyses, data were tested for normality and homogeneity of variance using Shapiro-Wilk test
and Levene test, respectively. One way analysis of variance (ANOVA) was used to test whether soil amendments
had effects on maize growth parameters (plant height, chlorophyll concentration, and shoot and root weight)
and yield. Larval feeding and defense gene expression data were analyzed using generalized linear model (GLM)
with a quasi-Poisson distribution. Means were compared and separated using Student-Newman-Keuls (SNK)
test and Tukey post hoc test (P <0.05). Two-sample student’s ¢-test (independent) was used to determine if there
were differences between constitutive and induced larval feeding as well as differences between constitutive and
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1(A)

induced expression of maize defense genes and agronomic nitrogen use efficiencies. The principal component
analysis (PCA) was conducted to explore the relationship between soil amendments and growth parameters, as
well as interactions between soil amendments, larval feeding, and expression of maize defense genes. Pearson’s
correlation coefficient was performed to investigate the linear relationship between expression of anti-feeding
gene (mpi) and larval feeding. All statistical analyses were performed using R software packages (v4.1.2)*with
a set at 0.05.

Results

Growth parameters

We found differences regarding plant height, chlorophyll concentration, and biomass accumulation among
maize plants grown in BSFFF amended soil, synthetically fertilized, and non-fertilized soils. Maize grew faster in
BSFFF amended soil compared to those grown in synthetically fertilized and non-fertilized soils at 14, 21, and
28 days after germination (F, 5, = 22.38, P<0.00L, F, ., = 33.78, P<0.001, F, ;, = 75.95, P<0.001, respectively,
Fig. 1A). However, this difference was not observed in the first week after germination (F 257 = 5.24, P=0.080,
Fig. 1A). In addition, we observed higher chlorophyll concentrations in maize plants grown in BSFFF amended
soil in comparison to those grown in synthetically fertilized and non-fertilized soils at 7, 14, 21, and 28 days
after germination, (F ,,, = 19.15, P<0.001, F, . = 81.25, P<0.001, F, = 85.47, P<0.001, F,, = 112.70,
P=<0.001, respectively, Fig. 1B). Chlorophyll concentration for maize plants grown in BSFFF amended soil
and synthetically fertilized soil were comparable in first, second, and third week after germination (P=0.140,
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Fig. 1. (A) maize plant height, (B) chlorophyll concentration at one, two, three and four weeks after
germination, and (C) box plots representing maize root and shoot weight after four weeks of growth in soil
amended with black soldier fly frass fertilizer (BSFFF) and synthetic fertilizers and non-fertilized soil. Different
small letters above the error bars and upper whisker indicate a significant difference between the means of the
treatments (P <0.05).
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P=0.410 and P=0.460, respectively, Fig. 1B). We observed higher shoot and root dry weight in the maize plants
grown in BSFFF amended soil compared to those grown in synthetically fertilized and non-fertilized soils (F
=81.18, P<0.001, F , ,, = 81.18, P<0.001 respectively, Fig. 1C).

The PCA indicated distinct variations in root and shoot weight, chlorophyll concentration, and plant height
based on soil treatment (Fig. 2). For growth parameters, PC1 accounted for 84.3% of the total data variability,
while PC2 explained 8.9%, for a combined total of 93.2% (Fig. 2). All measured growth parameters (root and
shoot weight, chlorophyll concentration, and plant height) were highest in soil amended with BSFFF compared
to the other soil treatments and showed a positive correlation with each other.

2,27

Gene expression

Undamaged maize plant grown in BSFFF amended soil constitutively expressed significantly higher mpi and
lox-3 defense genes than those grown in soil amended with synthetic fertilizers and non-fertilized soils (F,
13.59, P<0.001; F, , = 23.92, P<0.001, Fig. 3A). However, these differences were not observed in constltutlve
expression of pr-5 defense gene among the different soil treatments (F, , = 0.39, P=0.680, Fig. 3A). We noted
significant high expression of induced defense genes (pr-5 and mpi) {3 maize plants grown in soil amended
with BSFFF than those grown in synthetic fertilizers and non-fertilized soils (F, , = 3.82, P=0.020, F, , = 6.65,
P=0.004, Fig. 3B). These differences were not apparent in induced expression of [ox-3 gene in undamaged maize
plant grown in BSFFE, synthetic fertilizer and non-fertilized soils (F, , = 0.78, P=0.480, Fig. 3B).

Spodoptera frugiperda-damaged maize plants grown in soil aniended with BSFFF inductively expressed
significantly higher pr5, mpi, and lox-3 defense genes compared to undamaged maize plants grown in soil
amended with BSFFF (P=0.003, P=0.010, P=0.050, respectively, Fig. 3C). However, there were no differences
observed between constitutive and induced expression of pr5, mpi, and lox-3 in maize plant grown in synthetically
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Fig. 2. Principal component analysis (PCA) of growth parameters on soil amendments with black soldier
fly frass fertilizer (BSFFF), synthetic fertilizers, and non-fertilized soils. PC1 = principal component 1;
PC2 =principal component 2.
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Fig. 3. Relative quantification of pathogenesis related protein 5 (pr-5), maize proteinase inhibitor (mpi) and
lipoxygenase 3 (lox-3) maize defense genes on, (A) undamaged maize plants, (B) S. frugipreda-damaged maize
plants, and (C) constitutive and induced expression of defense genes in maize plants grown in soil amended
with black soldier fly frass fertilizer (BSFFF), synthetic fertilizers and non-fertilized soils. Different letters
above the error bars and upper whisker indicate a significant difference between the means of the treatments
(P<0.05) for A and B. * indicate significant difference, while n.s indicates no significant difference (C).
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fertilized soil (P=0.110, P=0.150, and P=0.630, respectively, Fig. 3C) as well as those planted in non-fertilized
soils (P=0.500, P=0.200, and P=0.150, respectively, Fig. 3C).

Larval feeding

Spodoptera frugiperda larvae fed significantly less leaf tissue from undamaged maize plants grown in soil
amended with BSFFF in comparison to leaf tissue from maize plants grown in synthetically fertilized and non-
fertilized soils (F, ,, = 62.73, P<0.001, Fig. 4A). Similarly, S. frugiperda larvae consumed significantly less maize
leaf tissue in initially damaged maize plants grown in BSFFF amended soil in comparison to those grown in
soil amended with synthetically fertilized and non-fertilized soils (F, ,, = 103, P<0.001, Fig. 4B). There was
a significant difference in leaf area fed by S. frugiperda between undamaged and damaged maize plants in soil
amended with BSFFF (P=0.020, Fig. 4C). However, there were no significant differences in larval feeding
between damaged and undamaged maize plants grown in synthetically fertilized (P=0.140) and non-fertilized

soils (P=0.250, Fig. 4C).
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Fig. 4. Box plot representing mean leaf area consumed by Spodoptera frugiperda naive neonates in a no-
choice experiment on (A) undamaged maize plant, (B) damaged maize plant, and (C) comparison between
undamaged and damaged maize plant grown in soil amended with black soldier fly frass fertilizer (BSFFF),
synthetic fertilizers and non-fertilized soils.
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Gene expression and larval feeding

A strong and significant negative correlation was observed between larval feeding and the relative expression
of the mpi gene in maize plants grown in soil amended with BSFFF (R = -0.850, P<0.010, Fig. 5). On the
other hand, maize plants grown in soil amended with synthetically fertilized and non-fertilized soils showed no
significant correlation and only a weak negative correlation between larval feeding and expression of mpi gene
(R =-0.460, P=0.250; and R = -0.160, P=0.700, respectively, Fig. 5). Larval feeding and gene expression were
explained by PCI that accounted for 66.1% of the total data variability, and PC2 explained 17.5%, for a total
of 83.6% (Fig. 6). Larval feeding was highest in non-fertilized soil while mpi and lox-3 gene expression were
highest in soil amended with BSFFF, and pr-5 was highest in soil amended with synthetic fertilizer treatments.
Expression of maize defense genes positively correlated with each other but negatively correlated with larval
feeding (Fig. 6).

Impact of fertilizer treatments on maize yield and nitrogen use efficiency

The different fertilizer treatments had a significant effect on maize yield (F, ; = 26.60, P=0.001), but not on
agronomic N use efficiency (T'=1.24, df=3.99, P=0.282). Soil amendment with BSFFF and synthetic fertilizer
increased maize yield by 2.86 t ha™! (105%) and 1.93 t ha~! (71%), respectively, compared to the unfertilized
control soil (Fig. 7A). Moreover, maize grown in BSFFF amended soil exhibited 0.93 t ha™! (20%) higher yield
and 48% greater N use efficiency than those grown with synthetic fertilizer (Fig. 7B).

Discussion

The current study provides empirical evidence that soil amendment with BSFFF not only improves maize plant
growth but also reduces larval feeding of an invasive insect pest, S. frugiperda by upregulating maize defense
genes. Our findings suggest that BSFFF amended soil mediated alterations in plant defense genes that positively
affect direct plant defense traits. To the best of our knowledge, this is the first study to show enhancement
of plant defense genes through soil amendment using an insect frass fertilizer while simultaneously deterring
insect foliar feeding.
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Fig. 5. Scatter plot of Pearson correlation between larval feeding of Spodoptera frugiperda naive neonates and
expression of anti-chewing defense gene (maize proteinase inhibitor (mpi)).
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Fig. 6. Principal component analysis (PCA) of larval feeding and gene expression in soil amendments with
black soldier fly frass fertilizer (BSFFF), synthetic fertilizers and unfertilized soils. PC1 = principal component
1; PC2 =principal component 2.

Plant height, chlorophyll concentration, and biomass accumulation on soils amended with BSFFF increased
considerably compared to those grown in synthetically fertilized and non-fertilized soils. Soil amendments
that improve nitrogen, potassium, and phosphorous availability restore cell growth and promote plant growth
and development®. Both organic and inorganic fertilizers enrich soil with essential nutrients that stimulate
plant growth®!. Possibly, the increased plant growth regardless of the amendment regime was associated with
increased nutrient availability. Studies by Beesigamukama et al.* and Tanga et al.®* have also reported higher
plant growth of maize grown in soils amendment with BSFFF than unamended soils. Interestingly, plant height
and chlorophyll concentration varied over time after maize germination. Notably, there were no differences
in the early days after germination, likely due to slow release and uptake of nutrients in BSFFF amended
s0ils®® resulting in initially low nutrient availability. Thus, the similar early growth rates across all treatments
could be due to equal nutrient availability at the start of germination. These results concur with those obtained
by Bashir et al.**who showed that maize plants grown in organic, inorganic, and non-fertilized soils attained
similar growth rates within the first two weeks of germination. However, at later days of growth stages, plant
height and chlorophyll concentration in maize plants grown in soil amended with BSFFF surpassed maize plants
grown in synthetically fertilized and non-fertilized soils. This can be linked to the fact that nitrogen release from
BSFFF or organically amended soils exhibit a slow pace during the initial stages of plant growth but sustained
adequate levels for prolonged soil quality and plant growth?>63656,_ On the other hand, synthetic fertilizers
release nitrogen faster but only for a short period of time®’thus, lower growth rate at later stages of plant growth.
The increased plant growth at late stages of maize growth in soil amended with BSFFF is likely due to enhanced

Scientific Reports|  (2025) 15:29978 | https://doi.org/10.1038/s41598-025-14883-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

7
;\6
2s
.
1_3‘4
2 3
>
£ 2
©
& 1
0

1

1

1

(A)

a > 60 - a
a 3 = 50 -
3 o a
pd ! 40 - ]
b Qo x
£ - 30 - l
e 8 20
6o U7
o © i
& % 10
T T 1 0 T 1
Non-fertilized  Synthetic BSFFF Synthetic BSFFF
soil fertilizer fertilizer
Fertilizer treatments Fertilizer treatments

Fig. 7. Grain yield (A) and agronomic nitrogen use efficiency (B) of maize grown in soil amended with black
soldier fly frass fertilizer (BSFFF) and synthetic fertilizer. Different letters above the error bars indicate a
significant difference at P<0.05.

and sustained nutrient mineralization and adsorption®®which not only supports plant growth but also promotes
biomass accumulation.

Our study revealed significantly higher maize grain yields in fertilizer treated plots compared to the
unfertilized control, highlighting the crucial role of fertilizers in enhancing crop productivity, particularly in
the degraded soils of Kenya®. Increased maize yield and agronomic nitrogen use efficiency achieved using
BSFFF treated plots, compared to plots treated with mineral fertilizers has been previously reported®>2. These
improvements may be attributed to the more effective nutrient supply and availability from the newly introduced
frass fertilizer®. Additionally, the high nutrient release associated with the rapid mineralisation rate of BSFFF
has been reported to enhance plant growth and productivity’®®%. Beyond nutrient supply, BSFFF may also
contribute to improved crop performance by enhancing drought and salt stress tolerance, suppressing pests and
diseases, and boosting plant defense mechanisms’®. Generally, plant defense theory projects a trade-off between
plant growth and defense, across species and genotypes®!. It further predicts resource allocation in response to
biotic and abiotic stresses with rapidly-growing plants typically exhibiting poor defense mechanisms®!. Here, we
demonstrated that maize grown in soil amended with BSFFF not only had superior growth but also exhibited
upregulated maize defense genes, leading to reduced herbivore feeding. This increased direct resistance to S.
frugiperda in BSFFF amended soil is both economically and ecologically important, since leaf tissue removal
adversely affects photosynthetic activity and reduces yield!””!. Furthermore, the extent of herbivore damage can
be associated with pathogen infections, further threatening plant health’>-74,

What drives this increased resistance to herbivores in maize planted in BSFFF amended soil? In Poaceae
species, including maize, plant defense genes such as proteinase inhibitors (PIs) are usually present in seeds
and other plant parts where they are synthesized and stored””. These molecules have been identified as potent
precursors that mediate resistance against pathogens and herbivore pests®’°. Plant defense genes are often
activated by defense signaling pathways such as jasmonic acid, ethylene and salicylic acid to confer anti-chewing
and anti-digestive properties against insect attack®®’%78, In this study, maize defense genes including pr-5, lox-3,
and mpi were elevated in maize seedlings grown in soil amended with BSFFE. This elevated synthesis of these
known defense genes especially the mpi in maize planted in BSFFF amended soil strongly correlated with reduced
S. frugiperda larval feeding observed in our results. This reduction in herbivore leaf consumption in otherwise
better growing plants in BSFFF amended soil constitutes a paradox. Generally, insect herbivores tend to feed
poorly on nutrient-deficient plants and better on well fertilized plants like those grown in soil amended with
BSFFF!776, For example, S. exigua fed more on nitrogen-fertilized plants compared to those with low nutrient
availability”’. The observed differences are correlated with reduced production of defense molecules in plants
fertilized with synthetic fertilizers, making them more susceptible to herbivore attack?’+*3. Here, we suggest that
constitutive expression of higher defense especially the mpi in maize plants grown in BSFFF amended soil could
also have higher defense response against the lepidopteran herbivores. Indeed, there is strong evidence that PIs
play a key role in plant defense response against insect herbivores through inhibition of proteolytic enzymes
such as elastase and chymotrypsin in insect herbivore midguts’. This enzymatic inhibition reduces food
digestibility, leading to reduced insect feeding rates®. Our results indicate that BSFFF amended soil increases
maize resistance to S. frugiperda by enhancing PIs synthesis, thus limiting insect feeding.

Moreover, exposure of maize plant to S. frugiperda larval feeding further increased expression of defense
genes relative to undamaged maize plants in BSFFF amended soil. Consequently, herbivore feeding between
insect damaged and undamaged maize plants was found to be significantly reduced in insect damaged maize
plants grown in BSFFF amended soil as opposed to other soil treatments. Herbivore feeding not only causes
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physical damage to plants but also releases oral cues (saliva, regurgitant, and frass) which trigger defense
mechanisms®*" 7879, | The observed increment in induction of defense on damaged plants than undamaged
plants could therefore be associated with insect-derived elicitors produced by S. frugiperda larvae during feeding
which further upregulated maize defense genes in maize grown in BSFFF amended soil. Indeed, plant damage
by S. exigua and S. frugiperda has been shown to stimulate accumulation of mpi in plant tissue adjacent to the
herbivore damaged parts®>7>. What is interesting in the current results is that this accumulation of PIs following
insect herbivore damage was only significantly higher in maize plants grown in soil amended with BSFFF as
opposed to amendments with synthetically fertilized and non-fertilized soils.

What components in BSFFF-amended soil drive the upregulation of defense genes and subsequent reduction
in herbivore feeding? Plants employ comprehensive defense mechanisms and their activation to initiate
resistance to herbivore insects are often controlled by quantity and quality of soil nutrients among other factors**.
Therefore, nutritional deficiency negatively impact plants’ ability to protect themselves against insect attack
through expression of plant defense genes**2. In addition, plant resistance to herbivore pests is intrinsically
linked to not only soil physicochemical properties but mainly soil biological properties®*’. Mattoo & Abdul-
Baki®® noted that plant genetic responses are likely influenced by soil microbial communities, shaping plant
resistance traits. Given that soil amendment with BSFFF improves soil biological quality>>*>¢” the heightened
induction of defense genes in BSFFF amended soils could be explained by the effects of the amendment on
soil health. Conversely, synthetic fertilizers adversely affect soil microbial diversity®! describing the decreased
expression of defense genes. These results align with previous studies which demonstrated that plants grown
in soil amended with organic fertilizers induced higher defense gene expression than those grown in inorganic
fertilizers?’*8,

Conclusions

This study aimed at assessing the impact of amending soil with BSFFF on plant growth, defense genes expression,
herbivore pest resistance, agronomic nitrogen use efficiency and yield. The study demonstrates that soil
amendment with BSFFF improves maize plant growth and upregulates defense genes, contributing to increased
resistance against S. frugiperda, high nutrient use efficiency and grain yield. The elevated expression of maize
defense genes plays an important role in plant-insect interactions, effectively reducing S. frugiperdalarval feeding.
The link between BSFFF soil amendment and the associated expression of plant defense genes demonstrates a
new mechanism through which insect frass fertilizer can reduce plant damage by invasive S. frugiperda. This
study provides empirical evidence that soil amendments can influence plant defense traits, offering a promising
strategy for sustainable pest management and crop protection. Due to the rapid development of insect farming,
further studies on the impact of bioactive compounds of BSFFF on soil microbiome need to be systematically
explored with particular attention to above-and below-ground microbial shifts. Additionally, future studies
should investigate the role of soil amendment with BSFFF on plant phytochemistry and subsequent attraction
of insects’ natural enemies and repellence of herbivore pests. A deeper understanding of these mechanisms
will provide valuable insights into how soil amendments shape plant growth, defense responses, and herbivore
resistance, ultimately contributing to more sustainable agricultural practices and enhanced agroecosystem
productivity.

Data availability
The data that support the findings of this study are currently available from the corresponding author upon
reasonable request.
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