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Abstract: Price forecasting is more sensitive with vegetable crops due to their high nature of perishability and seasonality 

and is often used to make better-informed decisions and to manage price risk. This is achievable if an appropriate model with 

high predictive accuracy is used. In this paper, Seasonal Autoregressive Integrated Moving Average (SARIMA) model is 

developed to forecast price of tomatoes using monthly data for the period 1981 to 2013 obtained from the Ministry of 

Agriculture, Livestock and Fisheries (MALF) in the agribusiness department. Forecasting tomato prices was done using time 

series monthly average prices from January 2003 to December 2016. SARIMA (2, 1, 1) (1, 0, 1)12 was identified as the best 

model. This was achieved by identifying the model with the least Akaike Information Criterion. The parameters were then 

estimated through the Maximum Likelihood Estimation method. The time series data of Tomatoes for wholesale markets in 

Nairobi are considered as the national average. The predictive ability tests RMSE = 32.063, MAPE = 125.251 and MAE = 22.3 

showed that the model was appropriate for forecasting the price of tomatoes in Nairobi County, Kenya. 
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1. Introduction 

In Kenya, the agriculture sector is the mainstay of the 

economy, contributing about 30% of the GDP and accounting 

for about 80% of employments. The total domestic value of 

the horticulture sector in 2012 amounted to Ksh 217 billion 

occupying an area of 662,835 ha with a total production 

quantity of 12.6 million tons. As compared to 2011, the total 

value, area and production increased by 6%, 9% and 38% 

respectively [13]. Vegetables contributed about 38% of the 

domestic value of horticulture with 287,000 ha under 

production and producing 5.3 million tons valued at Ksh 91.3 

billion. Production increased by 13% while there was a slight 

reduction in value by 4% from 2011 levels. The increased 

production is occasioned by favourable weather conditions 

that resulting to high yield, thus reducing the value of 

vegetables. However, there was a drop in prices for 

commodities like Cabbages and Tomatoes thereby reducing 

the overall value for the year. 

According to [13] tomato (Lycopersicon esculentum mill) 

is amongst the promising commodities in horticultural 

expansion and development in Kenya. It accounts for about 

14% of the total vegetable produce and 6.72% of the total 

horticultural crops [12, 13]. Tomato is grown either on open 

field or under greenhouse technology. Open field production 

account for about 95% while greenhouse technology 

accounts for 5% of the total tomato production [13].  

The aim of this paper is to analyze the price fluctuations of 

tomatoes in Nairobi County Kenya using SARIMA model as 

the analysis tool. Vegetable price analysis is used to 

formulate price stability policy and increased production. 

Accurate public information to farmers and market 

stakeholders like middlemen can inform policy forecasters to 

reduce price variance in other markets. The application of 

SARIMA as analysis tool can give an early warning message 

of tomatoes price fluctuation in the future. 

2. Review of Previous Studies 

According to [15] wholesale prices for vegetables are 

characterized by large seasonal variations, the degree and 

different timing of the changes. Due to the price fluctuations, 

vegetable producers normally have large losses, therefore the 

adaption of production to seasons, market research and 
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technological development should all be improved. Assis et 

al.;[14] compared four different Univariate time series 

models: exponential smoothing, autoregressive integrated 

moving average (ARIMA), generalized autoregressive 

conditional heteroscedasticity (GARCH) and the mixed 

ARMA and GARCH models. Dieng [16] investigated the 

performance of parametric models in forecasting selected 

vegetable prices in Senegal and suggested the use of the 

parametric ARIMA model as compared to the non-

parametric models. 

The efficiency of ARIMA and GARCH models were 

compared for modelling and forecasting the spot prices of 

Grams in India [23] and the SARIMA models were used to 

forecast the prices of Tomatoes in selected Indian states [19]. 

Gathondu [11] fitted four models to wholesale prices of 

major vegetables: tomato, potato, cabbages, kales and onions 

for markets in Nairobi, Mombasa, Kisumu, Eldoret and 

Nakuru in kenya using Autoregressive Moving Average 

(ARMA), Vector Autoregressive (VAR), Generalized 

Autoregressive Condition Heterostadicity (GARCH) and the 

mixed model of ARMA and GARCH. In the study they 

found ARIMA (3, 1, 2) to be the best fitting model for 

tomatoes. The model failed to capture seasonal variability. 

Dragan et. al., [18] analyzed the changes and future 

tendencies of the price of tomatoes with descriptive statistics 

and found that the ARIMA models were suitable for price 

forecasting. Sampson et. al., [17] argued that among the 

seasonal decomposition models of forecasting, the Seasonal 

Autoregressive Integrated Moving average (SARIMA) 

models could enable producers to achieve better market 

prices by adopting the practice. In another study, [20] applied 

SARIMA models to forecast the prices of tomatoes in Turkey 

and found SARIMA (1, 0, 0) (1, 1, 1)12 model as the most 

suitable. They reported that the highest tomatoe prices 

seasonally adjusted were in October. Boateng et al., [19] 

found that the predictability of the model increased with 

seasonal ARIMA (SARIMA). They noted wide fluctuations 

in prices of tomatoes in different months, prices sometimes 

increase 10 times compared to prices during peak harvest 

periods which implied that if farmers plan their area under 

tomatoes properly, sowing dates and sales by considering 

forecasted prices from the ARIMA models to receive 

increased prices, earnings may increase at least three to four 

times with 90% predictability of the forecast accuracy. 

According to [21], accurate prediction of agricultural prices 

is beneficial to correctly guide the circulation of agricultural 

products and agricultural production and realize the 

equilibrium of supply and demand of the agricultural area. 

3. Material and Methods 

3.1. Data Overview 

The wholesale price data is gathered from the Ministry of 

Agriculture, Livestock and Fisheries (MALF) in the 

agribusiness department which was collected by extension 

officers in the various wholesale markets. The data was 

available on weekly prices and covered the four year period 

from 2003 to 2018 which was computed to obtain monthly 

average prices. Under this study, the average wholesale 

prices for markets Nairobi County is considered as the 

classical national average. The time series data is measured 

in Kenya shillings per Kilograms (Ksh/Kg) and the data 

ranged from January 2004 until December 2018. 

3.2. ARIMA Model 

A generalization of ARMA models which incorporates a 

wide class of non-stationary time-series is obtained by 

introducing the differencing into the model. The simplest 

example of a non-stationary process which reduces to a 

stationary one after differencing is Random Walk. A process 

{��} is said to follow integrated ARIMA model denoted by 

ARIMA (p, d, q), if ∇��� = (1 − �)�
 , is ARIMA (p, q). 

The model is written as Equation (1): 

�(�)(1 − �)��� = �(�)
�                       (1) 

The ARIMA methodology is carried out in three stages, 

viz. identification, estimation and diagnostic checking. 

Parameters of the tentatively selected ARIMA model at the 

identification stage are estimated at the estimation stage and 

adequacy of selected model is tested at the diagnostic 

checking stage. If the model is found to be inadequate, the 

three stages are repeated until satisfactory ARIMA model is 

selected for the time-series under consideration. An excellent 

discussion of various aspects of this approach is given in Box 

and Jenkins [3]. Most of the standard software packages, like 

SAS, and RGui contain packages and procedures for fitting 

of ARIMA models. 

3.3. SARIMA Models 

SARIMA models are an adaptation of autoregressive 

integrated moving average (ARIMA) models to specifically 

fit seasonal time series. That is, their construction takes into 

account the underlying seasonal nature of the series to be 

modelled. Seasonality in a time series refers to a regular 

pattern of changes that repeats over in time-periods, where S 

defines the number of time-periods until the pattern repeats 

again. For monthly rainfall data S = 12. In a seasonal 

ARIMA model, seasonal AR and MA terms predict xt using 

data values and errors at times with lags that are multiples of 

S (the span of the seasonality). The seasonal ARIMA model 

incorporates non-seasonal and seasonal factors in a 

multiplicative model and is denoted as: 

ARIMA	(�, �, �) × (�, �, �)	� 

Where p = non-seasonal AR order, d = non-seasonal 

differencing, q = non-seasonal MA order, P = seasonal AR 

order, D = seasonal differencing, Q = seasonal MA order, and 

S = time span of repeating seasonal pattern. 

Without differencing operations, the model can be written 

as: 

Φ	(��)	φ	(�)	( !	 − 	μ) = 	Θ	(��)	θ	(�)%!       (2) 
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The non-seasonal components are: 

AR: φ	(�) 	= 	1	 − 	φ1�	−. . . −	φ���            (3) 

MA: θ	(�) 	= 	1	 + 	θ1�	+. . . +	θ���             (4) 

The seasonal components are: 

Seasonal AR: 

Φ	(��) 	= 	1	 − 	Φ1��	−. . . −	Φ����           (5) 

Season MA: 

	Θ	(��) 	= 	1	 + 	Θ1��	+. . . +	Θ����            (6) 

3.3.1. Model Identification in SARIMA 

The first step of applying the model is to identify 

appropriate order of ARIMA (p, d, q) model. Identification of 

ARIMA model involves selection of order of AR (p), MA (q) 

and I (d). The order of d is estimated through I (1) or I (0) 

process. The model specification and selection of order p and 

q involves plotting of ACF and partial PACF or correlogram 

of variables at different lag lengths. The significance level of 

individual coefficients is measured by Box-Pierce Q statistics 

and jointly together by Ljung-Box LB statistics. The Box-

Pierce Q statistics is defined as; 

� = ∑ )*+,-*./ ~ -+                                 (7) 

Where n = sample size and m is lag length. And Ljung 

Box (LB) Statistics is defined by: 

1� = 2(2 + 2)∑ 456,
78*

-*./ ~ -+                      (8) 

Where n = sample size and m is the lag length of the date. 

The possible SARIMA model is determined that best fit the 

data under consideration. SARIMA model is appropriate for 

stationary time series therefore, the data under consideration 

must satisfy the condition of stationarity that is the mean, 

variance and autocorrelation are constant over time. 

3.3.2. Parameter Estimation SARIMA 

To estimate SARIMA models the ML method is used. 

Under the assumption of independent and distributed 

standardized 9� , the log-likelihood (LL) function of {��(�)} 
for a Τ observations sample, is given by: 

ln 1<(��), �= = ∑ >?2<�(9�(�), @)= − /
+ ?2<A�+(�)=BC�./     (9) 

where �  is the vector of the parameters that have to be 

estimated for the conditional mean, conditional variance and 

density function. 9�  is a sequence of independent and 

distributed random variables with mean as zero and variance 

as one. The approach of maximum likelihood (ML) requires 

the specification of a particular distribution for a sample of T 

observations	��. 
D(E� , E�8/, … , E� = �!) = D(�C8/, … ��|H)             (10) 

denote the probability density of the sample given the 

unknown parameters (2 × 1) parameters H . Following the 

notation of Box and Jenkins, 1(H|�)  with respect to 

derivatives to zero and using vector notation and suppressing 

y the result becomes teach of the unknown parameters of the 

vector H  the notation is the most appropriate. Setting the 
I(J)
IJ = 0. As a rule, the likelihood equations are non-linear. 

Therefore, the ML estimates must be found in the course of 

an iterative procedure. This is true for the exact likelihood 

function of every Gaussian ARMA (p, q) process.  

3.3.3. Forecasting with the SARIMA Model 

Forecasting is the process of making statements about 

events whose actual outcomes have not yet been observed. It 

is an important application of time series. After the model 

has passed the entire diagnostic test, it becomes adequate for 

forecasting which the last step is in Box-Jenkins model 

building approach. For instance, let us consider the given 

Seasonal ARIMA (0, 1, 1) (1, 0, 1)12 we can forecast the next 

step which is given by Cryer and Chan [24] as: 

9� − 9�8/ = Φ(9�8/+ − 9�8/L) + 
� − �
�8/ −Φ
�8/+ + �
�8/L   (11) 

9� = 9�8/ +Φ9�8/+ −Φ9�8/L + 
� − �
�8/ −Φ
�8/+ + �
�8/L   (12) 

The one step ahead forecast from the origin t is given by 

9̂�N/ = 9� +Φ9�8// −Φ9�8/+ − �
� −Φ
�8// + �
�8/+ (13) 

The next step is 

9̂�N+ = 9̂�8/ +Φ9�8/O −Φ9�8// −Φ
�8/O + �
�8//    (14) 

and so on. The noise term 
/L, 
/+, 
//, … . , 
/  (as residuals) 

will enter into the forecasts for lead times ? = 1, 2, … , 13, but 

for ? > 13 the autoregressive part of the model takes over; 

9̂�NR = 9̂�8RN/ +Φ9�NR8/+ −Φ9�NR8/L, DST	? > 13   (15) 

3.3.4. Forecasting Performance 

The accuracy for each model can be checked to determine 

how the model performed in terms of in-sample forecast. In 

terms of out sample forecasting, some of the observations are 

left out during model building. The accuracy of the model 

can be compared using forecast measure or some statistic 

such as mean error (ME), root mean square error (RMSE), 

mean absolute error (MAE), mean percentage error (MPE), 

mean absolute percentage error (MAPE), mean square error 

(MSE) etc. The model with the minimum of MAE or RMSE 

is considered to be the best for forecasting. The mathematical 

expressions are defined as: 

UVW = /
C∑ |�X� − ��|C�./ = /

C∑ |Y�|C�./                 (16) 

U�W = /
C∑ (�X� − ��)+C�./ = /

C∑ (Y�)+C�./              (17) 

ZU�W = [/
C∑ (�X� − ��)+C�./ = [/

C∑ (Y�)+C�./            (18) 

where yt is the actual observation,	�X� is fitted or the forecast 

value and T is the sample size. If we have perfect forecast 

then MAE = MSE = RMSE = 0. The smaller the value the 

better the prediction and the big the value the poorer the 
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predictive power of the model. 

4. Empirical Results 

The data used in this study is average monthly prices of 

tomatoes in Nairobi County from 2003 to 2016. The 

wholesale price data was gathered from the Ministry of 

Agriculture, Livestock and Fisheries (MALF) in the 

agribusiness department which was collected by extension 

officers in the various wholesale markets. Figure 2 shows the 

plot of Kenya’s monthly price of tomatoes.  

The prices of tomatoes vary along the year with the time 

period from 2003 to 2016 (Figure 1). The prices show a 

declining tendency during the first quarter of the year. They 

are picked in April and prices decline in June because of poor 

weather and the excess supply of tomatoes. Moreover, supply 

to the wholesale market is on the increase and picked in the 

May and June (Figure 1). The trend of wholesale price of 

tomatoes has an increasing trend after the period of June and 

continues in the last quarter of the year. The average real 

tomato price is KSh 87.27/kg in time period between 2003 

and 2016. And the lowest tomato price was KSh 61.875 per 

64kg crate in October and the highest price was KSh 

100.8125 per 64kg crate in May (Table 1). Figure 1 shows 

the presence of trend and seasonality in each time series of 

tomatoes price in Nairobi, county.  

Table 1 shows the monthly descriptive statistics of tomatoe 

prices. The average monthly price was highest in December 

and lowest in October. 

As observed from Figure 4, tomato prices do not indicate a 

significant trend. This indicates that the series is in a 

stationary structure. In fact, null hypothesis was rejected in 

Augmented Dickey-Fuller (ADF) test, which was performed 

to determine if the series is stationary or not. This shows that 

the series does not have a root unit which means it is 

stationary (Table 2). 

Table 1. Descriptive analysis of monthly wholesale prices of tomatoes in Nairobi County 

Month N Minimum Maximum mean std. dev 

January 16 7 161 87.375 50.50132 

February 16 8 153 85.3125 47.39862 

March 16 4 155 85.125 51.04883 

April 16 33 163 99.6875 45.21168 

May 16 26 166 100.8125 48.23169 

June 16 3 167 88.1875 53.05119 

July 16 10 165 87.125 50.76728 

August 16 6 169 86.0625 56.43577 

September 16 15 168 86.125 51.95495 

October 16 1 132 61.875 43.4233 

November 16 2 138 77.5625 43.87857 

December 16 9 170 102 48.26179 

 

Figure 1. Seasonal distribution of prices of tomatoes in Nairobi County. 

 

Figure 2. Time series plot of prices of tomatoes in Nairobi County. 
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Figure 3. Time series plot of differenced prices of tomatoes in Nairobi County. 

 

Figure 4. Monthly distribution of prices of tomatoes in Nairobi County. 

Table 2. ADF Test Result for Unit Root. 

Dickey-Fuller Lag Order P value 

-3.8619 5 0.01729 

H0: Tomatoe series has a unit root (there is non-Stationarity and no seasonality). 

H1: The series is stationary. 

 

Figure 5. ACF and PACF plot of prices of tomatoes in Nairobi County. 

ACF and PACF values of the series from which the 

seasonal differences are taken are presented in Figure 6. The 

seasonal spikes at ACF and PACF after 1 lag (12, 24,…) are 

observed as being cut off after taking the seasonal difference 

of the series. This also indicates the seasonal model of AR 

(1) and MA (1). Therefore, to include the model of (1, 1, 1) 

to the part (P, D, Q) of the model will be formed can be 

considered as one of the best possibilities among the 

alternative choices. At the non-seasonal part of the model (p, 

d, q); the discontinuation of PACF value after 1 lag indicates 

that the addition of the AR (1) term may be appropriate (see 

Figure 5). On the other hand, even the discontinuations 

occurs after 1 lag at ACF values, these values are observed to 

be increased after a certain lag. Therefore, there is no clarity 

for the MA term at the non-seasonal part of the model. In this 

case, two alternatives to be taken into account occur for the 

non-seasonal part of the model. One of these alternatives is 

the model which MA term is not added to (1, 0, 0), and the 

other one which MA term is added (1, 1,). 

Nine possible alternative models were analyzed based on 

the seasonal part of the model in order to select the SARIMA 

model which will be used to forecast the prices of tomatoes. 

The analyzed models are compared according to the Akaike 

Information Criterion (AIC) and the Schwarz Bayesian 

Criterion (SBC). The model selected should have the 

smallest AIC and SBC values (Wang and Lim, 2005). 

SARIMA (2, 1, 1) x (1, 0, 1)12 model has comparatively 

lower AIC and SBC values (Table 3). Therefore, this model 

was selected as the most suitable model or the best fit model 

from amongst the four models. 
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Table 3. Akaike Information Criteria (AIC), Schwarz Bayesian Criterion (SBC), and considering different SARIMA (p, 0, q) (1, 1, 1)12 models. 

Model DF AIC AICc BIC 

SARIMA (0, 0, 1), (0, 0, 1)12 189 8.20495 8.21648 7.255851 

SARIMA (1, 0, 0), (0, 0, 1)12 189 8.08220 8.09373 7.133096 

SARIMA (0, 0, 0), (0, 0, 1)12 190 8.529216 8.540300 7.563148 

SARIMA (1, 0, 0), (0, 0, 2)12 188 8.054761 8.086686 7.122625 

SARIMA (2, 1, 1), (1, 0, 1)12 185 8.0026 8.063865 7.103232 

SARIMA (1, 1, 1), (0, 1, 1)12 176 8.052334 10.00498 9.039445 

SARIMA (1, 1, 1), (0, 1, 1)12 174 8.052956 8.065738 7.137787 

SARIMA (1, 1, 1), (1, 1, 2)12 174 8.052956 8.065738 7.137787 

SARIMA (1, 1, 1), (0, 1, 2)12 176 8.112171 8.123702 7.16307 

 

Considering this model, the autoregressive and seasonal 

parameters were estimated respectively (Table 4). Although 

the constant term in the estimated SARIMA model is not 

significant at the different levels, the autoregressive and 

seasonal parameters are significant at the 1% level. 

After estimating the parameters of this model, further 

analysis was done with the selected SARIMA (2, 1, 1) x (1, 

0, 1)12 model to check whether the residuals of the model are 

independent. The autocorrelation and partial autocorrelation 

up to 36 lags were computed and their significance was 

tested using Box-Ljung test. It is evident from Figure 6 that 

the values of the SARIMA (2, 1, 1) x (1, 0, 1)12 residuals lie 

within the upper and lower confidence limits. Panel (b) 

shows p-values for the Ljung-Box statistics. Given the high 

p-values associated with the statistics, we cannot reject the 

null hypothesis of independence in this residual series. The 

results indicate that none of these correlations are 

significantly different from zero at a 95% confidence level. 

This shows that the selected SARIMA (2, 1, 1) x (1, 0, 1)12 

model is appropriate model for the monthly tomato price 

forecasting. 

The residuals were checked to find out if they followed a 

white noise process. This was achieved by plotting the 

residual Q-Q and normality test plots as shown in Figure 7. 

The Q-Q plot is reasonably straight so normality is okay. The 

histogram shows a bell shaped distribution with a p-value = 

0.0639237 > 0.05 which is an indicator for normality. 

In addition, the ACF plot of the residuals in Figure 5 

shows that for the first 20 lags, all sample autocorrelations 

fall inside the 95% confidence bounds indicating the 

residuals appear random. The forecasting evaluation statistics 

in Table 4 reveals that SARIMA model is appropriate in 

forecasting tomatoes prices in Kenya. 

 

Figure 7. Graphical diagnostics for assessing the SARIMA (2, 1, 1) x (1, 0, 1)12 model fit. 

The selected SARIMA (2, 1, 1) x (1, 0, 1)12 model was 

used to forecast the mean monthly real tomato prices from 

January-2011 to December-2011 by using the observed data 

of the period January-2003 to December-2016. The predicted 

prices were compared with the observed prices (Table 5). The 

predicted real tomato prices are close to the observed prices, 

except for the months of March and April. This result 

indicates that the model provides an acceptable fit to predict 

the tomato prices. 

After obtaining satisfactory forecasting results over a short 

period, the selected SARIMA (2, 1, 1) x (1, 0, 1)12 model was 

employed to forecast stream flow over a longer period. Table 

5 displays a forecast of the monthly real tomato prices in 

Nairobi County, Kenya for 2019. The forecasted tomato 
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prices were compared with the observed prices in Figure 8. 

As evident from Figure 8, SARIMA (2, 1, 1) x (1, 0, 1)12 

model is able to capture the flow trend. The forecast series 

tracks the actual series quite well during the period. The 

accuracy of this model is calculated based on the MAPE. The 

outcome shows that the proposed model can forecast the real 

tomato prices with an accuracy of MAPE value 125.251. 

MAPE is 125.251%, meaning that the forecasts are off by 

about 125% on average. The error at the estimation is at an 

acceptable level considering the extraordinary factors. 

Changes of conditions in the market entry of exporting 

countries immediately impact the tomato export and the 

prices (entry price, request for active ingredient, etc.). 

As shown in Figure 8; the structure of fluctuation of the 

prices predicted for the following three years is similar to 

previous years, but it exhibits a more stationary structure. 

This result indicates that important changes will not occur in 

tomato prices until the end of 2014 under normal conditions. 

Table 4. Best-fit models based on different criteria of monthly prices of tomato in Nairobi County Kenya. 

Tool ME RMSE MAE MPE MAPE MASE ACF1 

SARIMA 1.3491 32.063 22.3 -102.1 125.251 0.7111 -0.007 

 

Figure 8. Forecast and Original Observations for the Real Tomato Prices. 

Table 5. Forecast and Original Observations for the Real Tomato Prices. 

Month Year Point Forecast Lower 99.5% CI High 99.5% CI 

Jan 2019 128.7222 38.48605 218.9584 

Feb 2019 136.3064 36.33723 236.2756 

Mar 2019 141.0162 39.55868 242.4737 

Apr 2019 141.8015 39.67742 243.9256 

May 2019 140.5944 37.7994 243.3895 

Jun 2019 144.2263 40.70455 247.7481 

Jul 2019 132.889 28.62298 237.155 

Aug 2019 128.281 23.27284 233.2892 

Sep 2019 128.1427 22.39829 233.8871 

Oct 2019 124.2352 17.76022 230.7103 

Nov 2019 126.0878 18.88727 233.2883 

Dec 2019 128.0736 20.15252 235.9947 

Jan 2020 133.0322 18.97371 247.0907 

Feb 2020 134.9403 18.36067 251.5198 

Mar 2020 137.4491 19.6157 255.2825 

Apr 2020 138.0146 19.15192 256.8772 

May 2020 137.3084 17.42263 257.1942 

Jun 2020 139.6573 18.73875 260.5758 

Jul 2020 132.3903 10.44114 254.3395 

Aug 2020 129.4349 6.462763 252.4071 

Sep 2020 129.3457 5.359189 253.3322 

Oct 2020 126.8403 1.847913 251.8328 

Nov 2020 128.0281 2.037771 254.0183 

Dec 2020 129.3013 2.320955 256.2816 

 

5. Conclusion 

The results obtained from this study shows that the prices 

of tomatoes in Nairobi County have not shown any trends 

towards an increase or decrease, in other words the series is 

stationary. The forecasts predicted from SARIMA (2, 1, 1) 

(10, 1)12 model which was chosen in order to determine the 



53 Robert Mathenge Mutwiri:  Forecasting of Tomatoes Wholesale Prices of Nairobi in Kenya: Time  

Series Analysis Using Sarima Model 

course of the prices of the next 2 years show that any 

significant changes will not occur by the end of 2019. Better 

price forecast methods, which take into consideration of 

seasonality, need to be developed to accurately forecast 

tomato price information. When there are huge price 

fluctuations, there is a benefit for dissemination of accurate 

price forecasts among stakeholders to make informed 

decisions relating to land in production, marketing, trade, and 

storage. Adoption of cooperative, and contract, farming to 

shift price risk from farmers to large retailer can stabilize 

farmer income. Farmers can use forecast price information to 

hedge their positions by storing tomatoes in cold storage, 

selling them in other markets where prices are higher, and 

processing them to make tomato paste, tomato sauce, and 

ketchup if forecasted prices are too low. 
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