

SOUTH EASTERN KENYA UNIVERSITY UNIVERSITY EXAMINATIONS 2019/2020

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN METEOROLOGY

SMR 305: APPLICATIONS OF STATISTICAL METHODS IN METEOROLOGY II

DATE: 10TH DECEMBER, 2019

TIME: 4.00-6.00 PM

INSTRUCTIONS

- (a) Question ONE is COMPULSORY
- (b) Answer <u>ANY OTHER THREE</u> Questions
- (c) Demonstrate your answers with carefully drawn sketches where necessary

Question 1

a. Describe the following terms

i.	Population	(2 marks)
ii.	Correlation	(2 marks)
iii.	Statistic	(2 marks)
iv.	Qualitative data	(2 marks)
v.	Quantitative data	(2 marks)

b. The data below gives the distribution of rainfall in centimeters at some given station over a period of 40 years.

Class	s Interval	Frequency	
59.5-	64.5	1	-
64.5-	69.5	4	-
69.5-	74.5	8	-
74.5-	79.5	11	-
79.5-	89.5	6	-
84.5-	89.5	3	
89.5-	94.5	7	-
i.	Mean		(2 mark)
ii.	Median		(2 marks)
iii.	Variance		(2 marks)
iv.	Interquartile range		(3 marks)
v.	Draw a cumulative	ogive	(4 marks)
Ident	ify three properties of	the normal distribution	(3 marks)
	Class 59.5- 64.5- 69.5- 74.5- 79.5- 84.5- 89.5- i. ii. iii. iv. v. Ident	Class Interval 59.5-64.5 64.5-69.5 69.5-74.5 74.5-79.5 79.5-89.5 84.5-89.5 89.5-94.5 i. Mean ii. Median iii. Variance iv. Interquartile range v. Draw a cumulative Identify three properties of	Class Interval Frequency 59.5-64.5 1 64.5-69.5 4 69.5-74.5 8 74.5-79.5 11 79.5-89.5 6 84.5-89.5 3 89.5-94.5 7 i. Mean iii. Variance iv. Interquartile range v. Draw a cumulative ogive Identify three properties of the normal distribution

Use the information in the table below to calculate the:

d. During the month of January wind data at Ngong hills has a mean of 5 m/s with a standard deviation of 2 m/s. Find the percentage of wind that lies between 3 and 4 m/s assuming that the wind follows the normal distribution. (4 marks)

Question 2

The table below presents data for rainfall (Y) and maize yield (X).

Х		53	55	62	67	75	80	90
tones/ha								
Y (mm)	122	118	121	144	149	162	182	200

- a) Generate a linear regression model showing the relationship between rainfall and yield (10 marks)
- b) Test the hypothesis that there is no correlation in the population. Use 0.05 significance level (10 marks)

Question 3

- a) Describe the formula used to compute the coefficient of variability and show its applicability in determining variability in climate parameters (4 marks)
- b) Describe two methods used to convert non-normal data to normal (4 marks)

c)	Describe the following	methods used to	fill in missing data
----	------------------------	-----------------	----------------------

i)	Thiessen polygon	(8 marks)
ii)	Correlation and regression	(4 marks)
ion 4		
Give the	hree reasons that may lead to data inhomogeneity	(3 marks)
Discus	s any two methods of testing data homogeneity	(8 marks)
Identif	y the 4 major components of a time series	(4 marks)
Demo	nstrate using a well labeled diagram the following	
i)	Leptokurtic peak	(2 marks)
ii)	Platykurtic peak	(2 marks)
iii)	Normal peak	(1 marks)
	i) ii) ion 4 Give th Discuss Identif Demon i) ii) iii)	 i) Thiessen polygon ii) Correlation and regression ion 4 Give three reasons that may lead to data inhomogeneity Discuss any two methods of testing data homogeneity Identify the 4 major components of a time series Demostrate using a well labeled diagram the following i) Leptokurtic peak ii) Platykurtic peak iii) Normal peak

QUESTION 5

- a) A pilot balloon moves with an average speed of 3000mi/h. Eight balloons were tested to verify if the velocity was indeed 3000mi/h and the following was recorded: 3005, 2929, 2935, 2965, 2995, 3005, 2935 and 2905. Do the above data present sufficient evidence to suggest that indeed the average velocity is 3000mi/h? (8 marks)
- b) The table below gives the frequencies of rain and no rain forecasts that was made by a meteorologist in a forecasting office.

Observed event							
		Rain	No rain				
Forecast	Rain	65	35				
rorecast	No rain	35	65				

Are these forecasts skillful in your opinion (use alpha=0.05)? Prepare the theoretical (expected) frequency table and compute the chi-square test statistic. (12 marks)

H_{0:} Forecasts and observed frequencies are independent

 $H_{1:}$ Forecasts and observed frequencies are not independent

t Distribution Table

d.f.	t.100	t.050*	t.025**	t.010	t.005	d.f.
1	3.078	6.314	12.706	31.821	63.657	1
2	1.886	2.920	4.303	6.965	9.925	2
3	1.638	2.353	3.182	4.541	5.841	3
4	1.533	2.132	2.776	3.747	4.604	4
5	1.476	2.015	2.571	3.365	4.032	5
6	1.440	1.943	2.447	3.143	3.707	6
7	1.415	1.895	2.365	2.998	3.499	7
8	1.397	1.860	2.306	2.896	3.355	8
9	1.383	1.833	2.262	2.821	3.250	9
10	1.372	1.812	2.228	2.764	3.169	10
11	1.363	1.796	2.201	2.718	3.106	11
12	1.356	1.782	2.179	2.681	3.055	12
13	1.350	1.771	2.160	2.650	3.012	13
14	1.345	1.761	2.145	2.624	2.977	14
15	1.341	1.753	2.131	2.602	2.947	15
16	1.337	1.746	2.120	2.583	2.921	16
17	1.333	1.740	2.110	2.567	2.898	17
18	1.330	1.734	2.101	2.552	2.878	18
19	1.328	1.729	2.093	2.539	2.861	19
20	1.325	1.725	2.086	2.528	2.845	20
21	1.323	1.721	2.080	2.518	2.831	21
22	1.321	1.717	2.074	2.508	2.819	22
23	1.319	1.714	2.069	2.500	2.807	23
24	1.318	1.711	2.064	2.492	2.797	24
25	1.316	1.708	2.060	2.485	2.787	25
26	1.315	1.706	2.056	2.479	2.779	26
27	1.314	1.703	2.052	2.473	2.771	27
28	1.313	1.701	2.048	2.467	2.763	28
29	1.311	1.699	2.045	2.462	2.756	29
inf.	1.282	1.645	1.960	2.326	2.576	inf.

There is only a 5% probability that a sample with 10 degrees of freedom will have a t value greater than 1.812. * one tail 5% α risk ** two tail 5% α risk

Cumulative Standardized Normal Distribution

Area

Area from $-\infty$ to Z

					0	Ż				
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Τ/	ABLE	E									
Fo	ritica	l value	es								
						Degrees of f	reedom in th	e numerator			
		р	1	2	3	4	5	6	7	8	9
		.100	39.86	49.50	53.59	55.83	57.24	58.20	58.91	59.44	59.86
	1	.050	161.45 647.79	199.50 799.50	215.71 864.16	224.58	230.16 921.85	233.99 937.11	236.77 948.22	238.88 956.66	240.54 963.28
		.010	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5
		.001	405284	500000	540379	562500	576405	585937	592873	598144	602284
		.100	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38
		.050	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
	2	.025	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39
		.010	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
		.001	998.50	999.00	999.17	999.25	999.30	999.33	999.30	999.57	999.39
		.100	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24
101		.050	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
na	3	.025	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47
Ē		.010	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
enc		.001	167.03	148.50	141.11	137.10	134.58	132.85	131.58	130.62	129.86
ed		.100	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94
는		.050	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
-2	4	.025	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90
5		.010	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
leec		.001	/4.14	61.25	56.18	53.44	51.71	50.53	49.00	49.00	48.47
Ę		.100	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32
ň		.050	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
Ĕ.	5	.025	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68
es.		.010	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
-		.001	47.18	37.12	33.20	31.09	29.75	28.83	28.16	27.65	21.24
		.100	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96
		.050	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
	6	.025	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52
		.010	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
		.001	35.51	27.00	23.70	21.92	20.80	20.03	19.46	19.03	18.69
		.100	3.59	3.26	3.07	2.96	2.88	2.83	2.78	2.75	2.72
		.050	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
	7	.025	8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82
		.010	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
		.001	29.25	21.69	18.77	17.20	16.21	15.52	15.02	14.63	14.33

<u>F – Table</u>

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2=\chi^2_\alpha.$

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20,483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30,191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43,195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55,758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135,807	140.169