| dc.contributor.author | Wali, Augustus N. | |
| dc.date.accessioned | 2015-01-30T08:44:41Z | |
| dc.date.available | 2015-01-30T08:44:41Z | |
| dc.date.issued | 2010-06 | |
| dc.identifier.citation | Canadian Journal of Pure and Applied Sciences, Vol. 4, No. 2, pp. 1217-1219, June 2010 | en_US | 
| dc.identifier.issn | 1715-9997 | |
| dc.identifier.uri | file:///C:/Users/student/Downloads/AJANAKU-AJANI2_CJPAS.pdf | |
| dc.identifier.uri | http://hdl.handle.net/123456789/772 | |
| dc.description.abstract | Sun (1994) showed that if M is a maximal spacelike submanifold of ( ) n Mn c then either M is totally geodesic ( 2, 0) n c ≥ ≥ or 0 1 ,( 2, 0) ( ) 4 c ≤ ≤− − ≥ < S nn n c . The purpose of this paper is to study the geometry of an ndimensional compact totally real maximal spacelike submanifold M immersed in an indefinite complex space form ( ) n p M p c + . | en_US | 
| dc.language.iso | en | en_US | 
| dc.publisher | SENRA Academic Publishers | en_US | 
| dc.subject | Totally real submanifold | en_US | 
| dc.subject | Complex space form | en_US | 
| dc.subject | totally geodesic | en_US | 
| dc.title | On submanifolds of indefinite complex space form | en_US | 
| dc.type | Article | en_US |