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Abstract— Energy is one of the top operating expenses in 
industries. Following the increased adoption of smart grids in 
recent years, industries can leverage on its capabilities to design 
effective energy management schemes for competitive 
advantage. This paper addresses the challenge of energy 
management in industries by incorporating the aspects of a 
smart grid in designing an energy management system (EMS) 
where demand side management (DSM) is utilized to enable 
users control their energy usage and minimize costs. A 
forecasting model for electricity prices and demand is developed 
using Long Short Term Memory (LSTM) - Recurrent Neural 
Network (RNN).  The predicted prices are used in load 
scheduling to realize potential energy cost savings. The non-
priority loads are scheduled to leverage on low electricity prices 
during off peak times. The effectiveness of the designed energy 
management strategy is tested using an IEEE 30 bus system. A 
suitable operation schedule with committed units for each hour 
is given for one sample day. Using the test system with 20 loads 
yielded an annual energy cost saving of $2,961,169.20 and a 
payback period (PBP) of 4.39 years. Quantifying both the 
energy and non-energy benefits of investing in an EMS justifies 
its high investment cost.  Long term use of an industrial EMS is 
likely to yield huge energy and cost savings.  

Keywords— Smart grid, Energy Management System, Long 
Short Term Memory, Recurrent Neural Network, Demand Side 
Management, Demand Response, Time of Use  

I. INTRODUCTION  
Various research works have explored energy 

management from different perspectives. Y. Nozaki et al. 
discussed EMSs for homes, buildings, communities, and data 
centers where energy is optimized jointly [1]. Tests run on 
each of these systems yielded either a reduction in carbon 
dioxide emission or a considerable saving in energy. Energy 
cost was minimized with shared use of the communication 
system. Automated demand response (DR), the role of 
consumers in energy management, and various smart grid 
technologies such as direct load control, storage, and 
cogeneration were explored by Samad and Kiliccote [2]. The 
importance of understanding the rate structures when 
performing peak scheduling was emphasized. The use of a 
standard information model that supports DSM activities was 
recommended. Collins et al. [3] came up with an energy 
monitoring and management system (EMMS) suitable for 
improving energy efficiency, cost savings, and ecological 
profile in industries. The model had a graphical user interface 
and operation scheduler (GUIOS) that generated feedback to 
the operator through the fuzzy inference system to ensure 
energy and cost savings. The scheduler was used to schedule 

machine operations assuming that all processes are 
schedulable.  

According to Ogwumike et al. [4], scheduling of 
residential loads is done using dynamic prices determined 
from a day ahead variable pricing technique. A constrained 
linear programming problem for scheduling the appliances is 
solved using Mixed Integer Linear Programming 
optimization. It was noted that optimal scheduling of 
appliances can yield huge savings in energy. A generalized 
energy management scheme based on state task network was 
proposed in [5]. The scheduling of tasks and distributed 
energy resources was done based on the day-ahead hourly 
prices. The DR scheme enabled the users to shift electricty 
usage to off peak periods thus balancing the supply and 
demand, improving power reliability, and reducing the energy 
cost. In [6], a smart power management system based on 
hybrid energy storage is proposed. The authors created a smart 
EMS for a coal mine to boost energy efficiency, increase the 
utilization of renewable resources, and improve the reliability 
of the energy supplying system taking into consideration 
power quality aspects.  

M. Acone et al [7] designed an EMS for smart houses that 
optimized energy consumption and electricity cost while 
ensuring the consumer’s comfort. MATLAB, Simulink and 
Stateflow were used to simulate the EMS model whereas 
Monte Carlo Simulation was used to compare between the 
normal and economy scenarios.  The importance of a smart 
grid in energy demand management was addressed in [8]. The 
authors introduced the smart home concept where smart 
appliances communicate with the smart meters using a Home 
Area Network to inform electricity usage decisions.  Lastly, 
the idea of energy storage in prosumer based systems for both 
energy sharing and management was brought forth in [9]. The 
model was suitable in peak load management. Binary Integer 
Programming (BIP) was used for solving the objective 
function. This paper will therefore incorporate aspects of a 
smart grid in designing an EMS that will recommend suitable 
time of use (TOU) for industrial loads based on the predicted 
electricity prices. 

A. Contribution 
The capabilities of smart grids to process data, make 

informed decisions, and actively engage consumers in 
controlling their energy consumption are used in designing the 
EMS. LSTM machine learning technique is used in 
developing the prediction model. Load scheduling is 
performed based on the forecasted hourly electricity prices. A 
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suitable operating schedule with committed units is generated 
to inform the user on effective ways of minimizing energy 
cost. 

B. Paper Organization 
The rest of the paper is organized as follows: Section II is 

the problem formulation, Section III is the proposed 
methodology, Section IV is a presentation of simulated 
results, while Section V is the work’s conclusion and 
suggestions for further research. Lastly, the references used 
are listed. 

II. PROBLEM FORMULATION 
A multi-objective problem of not only seeking to minimize 

the energy consumption and cost but also to assess the 
economic viability of implementing an EMS is addressed. A 
forecasting model is developed using a machine learning 
technique rather than conventional time series modelling 
methods like Autoregressive Integrated Moving Average 
Model (ARIMA). Unlike other researches that use actual 
hourly electricity prices to do scheduling, predicted prices are 
used. This approach is highly recommended for long term 
planning in order to defer unnecessary energy costs. The 
economic viability of implementing the EMS is assessed using 
various economic tools. 

A. Forecasting and Load Scheduling Model 
The forecasting model is developed using LSTM RNN 

machine learning technique. The inputs to the model are 
historical data on hourly electricity prices and demand. LSTM 
networks are used to learn order dependence in the given 
sequence for accurate prediction. The main objective when 
training a machine learning model is to minimize the loss 
function. The mean squared error (MSE) loss estimator is 
chosen due to its suitability in determining the accuracy of the 
model when dealing with regression problems. MSE is 
selected over mean absolute error due to its ability to converge 
even with fixed learning rate and its sensitivity to outliers in 
the dataset. The magnitude of loss value is directly 
proportional to the gradient of MSE loss and this gradient 
reduces as the loss tends to zero. A good model should have 
MSE values closer to zero implying that the probability of the 
model to make accurate predictions is high. The number of 
epochs in the LSTM networks is increased until minimum 
MSE is obtained. The MSE is computed using the formula in 
equation 1: 
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Where n is the size of the test set, 	
�is the forecast error, �
  
is the actual price, and �
�is the forecasted price.  
The predicted prices are used to determine suitable load 
schedules. 

B. Possible Load Combinations 
Given n number of loads, the possible combinations is 

given by an array of binary groupings with a count from 0 to 
2n-1 [3]. The viable load combinations must ensure that the 
supply meets the demand at all times and all priority loads are 
on. A unit commitment schedule is generated showing all the 
possible machine combinations and the resulting energy cost. 

C. Objective Energy Cost Function 
Upon scheduling of the loads, the known power 

consumption rates and operation times of the active machines 
are used to determine the energy cost using equation 2. 
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Where �
��� is the total cost of electricity consumed by 
the ith active machine ($); ��� is the hourly electricity price 
($/MWh), t is the running time of each machine (h), �� is the 
power consumed by the ith active machine (MW), and n is the 
number of machines. 

D. Power Balance Constraint 
 The maximum power consumption for all the machines 
need to balance the power supplied by the generators and/or 
utility grid at any given instant. Considering a region with 
hundreds of industries that lack EMSs and share a distribution 
grid, the losses in each company will result in a huge power 
demand hence a significant impact on the grid. However, 
taking the case of a single industry within this zone, the impact 
of losses on the grid can be considered negligible. Equation 3a 
gives the power balance constraint assuming such an 
industrial set up.  
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Where %&'  is the peak power supplied and %(  is the power 
consumed by the ith active machine (MW). 
The non-priority loads are scheduled to take advantage of 
lower electricity prices ensuring that the constraint in 
equation 3b is met. 
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Where  )*  is the power consumed by each non-priority 
load and  .*�is the power consumed by each priority load. 

E. Economic Viability 
 The economic feasibility of investing in the 

industrial EMS is evaluated using cost benefit analysis (CBA). 
The costs which include the staff time utilized in setting up, 
implementing and conducting trainings on the use of the 
system are estimated. Others costs include that of purchasing 
additional metering tools and hiring experts to actualize the 
installation and use of the EMS. On the other hand, the energy 
and non-energy benefits of the EMS are also determined. The 
results of the CBA are evaluated using simple PBP and return 
on investment (ROI) computation using equations 4 and 5 
respectively. 
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III. LSTM – RNN TECHNIQUE 
LSTM-RNN is proposed for forecasting the electricity 

prices and demand. The method is capable of learning long 
sequences with long time lags [10]. Unlike Feed Forward 
Networks that do not model memory, RNNs store activations 
from each time step in the internal state of the network to 
provide a temporal memory thereby remembering previous 
inputs. This capability makes RNNs better suited for capturing 
information from sequences and time series. A simple RNN 
learns using back propagation through time and experiences 
the vanishing gradient problem when tackling long term 
dependencies. 

The pioneers of the use of LSTM were Hochreiter and 
Schmidhuber who devised the method to solve the problem of 
vanishing gradient by controlling the cell states using various 
gates [11]. The hidden layers in LSTM have memory blocks 
with four parts namely: 
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(i) Input gate which controls the activations that 
enter the memory cell. 

(ii) Forget gate which assists the network in 
resetting the memory cells by forgetting past 
inputs. 

(iii) Output gate which determines the output to pass 
on to successive networks and the ones to be 
filtered. 

(iv) Self-connected memory cell. 

The information at different states is regulated by the 
inputs and the hidden states generated from the previous steps 
after sigmoid or tanh activations within the neural network 
layers. Backpropagation through time (BPPT) is the training 
algorithm used in LSTM [10]. Equations 6 to 10 summarize 
the mathematical functions of the gates which perform the task 
of limiting the information passing through the memory cell.  
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Where  F
 is the input gate, �
 is the forget gate, J
 is the 
output gate, T
 denotes the cell state generated as an additional 
variable for the cell, N
  is the input, P
Q��is the hidden state in 
the previous step, W is the weight matrix and b is the biases to 
each layer. The symbol�U stands for the operation of element-
wise multiplication. Figure 1 shows the architecture of LSTM 
memory block. 

 
Figure 1: Architecture of LSTM memory block 

Stacked LSTM with four layers is used in this paper where 
each hidden layer has 50 LSTM units. The model is fit using 
the efficient Adam version of stochastic gradient descent and 
optimized using the mean squared error loss function. Once 
the model is defined, it is fit on the training dataset before 
being used to make predictions. The key aspects of the LSTM 
forecasting model are highlighted below:  

Layers: The number of layers influence the learning 
capacity of the model. It is important to use additional layers 
and have different numbers of neurons in each to improve 
hierarchical learning. 

Features and time steps: These define the shape of the 
input by specifying what the model expects for each sample. 

The use of lag observations as input features and time steps 
can improve the predictive capability of the model.  

Batch size: This is the number of training examples used 
in an iteration. The batch size determines the level of 
manipulation required for both the training and test datasets. 

Optimization algorithm: There are several optimization 
algorithms that tend to either accelerate or decelerate the 
learning process to improve the configuration’s efficiency.  

Weight regularization: This is done to control the rate of 
learning and reduce overfitting of the networks. 

Dropout: This is a regularization method that slows down 
learning within the recurrent LSTM networks.  

Loss function: This is an evaluation method for 
performance of a specific algorithm in modelling the given 
data. Optimization is done to enable the loss function learn 
how to reduce the prediction error.  

A summary of LSTM parameters mapping for the 
forecasting problem is given in Table 1. 

Table 1: Parameter Mapping for the Forecasting Problem 

LSTM 
Parameter 

Mapping to the Forecasting Problem

Input Historical values of electricity price and 
demand 

Output Predicted values of electricity price and 
demand 

Bias Error value being fed back to the input of 
the forecasting model 

Gates Factors that regulate the variation of 
electricity price and demand  

 

The key steps involved in designing the EMS are: 

(i) Analysis of historical data on electricity prices and 
demand. 

(ii) Building a forecasting model. 

(iii) Recommendation of possible operation hours. 

(iv) User input to choose preferred TOU of available 
machines. 

(v) Calculation of total energy consumed and energy 
cost. 

(vi) Calculation of potential energy savings if the cost 
obtained in the previous step is less than that incurred 
during normal scheduling. 

(vii) Determining viability of having an industrial EMS. 

 

The effectiveness of the designed model is tested using an 
IEEE 6 generator 30 bus system with 20 loads. Figure 2 
represents the IEEE 30 bus system. 
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Figure 2: IEEE 6 generator 30 bus system 

IV. RESULTS AND ANALYSIS 
 Forecasting: The historical data on electricity prices 

and demand was collected for 6 months beginning August 
2019 for Texas. 80% of the data was used for training the 
LSTM model while the remaining 20% was used to test the 
model. For the demand, the percentage difference between the 
actual and forecasted values range from 0.06 to 3.08 while for 
the price, it ranges from 0.89 to 14.01. The results obtained for 
the entire test period are used to plot the graphs in Figures 3 
and 4.  

 
Figure 3: Comparison of Actual and Predicted Hourly Demand 

 

 
Figure 4: Comparison of Hourly Actual and Predicted Electricity Prices 

Figures 3 and 4 indicate that the machine learned the 
pattern in the time series data given in the training set and used 
that pattern to predict the values in the test set. This was 

achieved by increasing the number of epochs in the training 
model thereby reducing the MSE loss. 

Load scheduling using predicted prices: A chart is 
generated to show all the active loads during each hour and 
the energy cost incurred with and without an EMS. 

The effectiveness of the operating schedule given is tested 
on an industrial system modeled based on IEEE 30 bus 
system. The system has a total supply of 435MW while the 
demand is 271MW for 12 priority loads and 214MW for 8 
non-priority loads. Scheduling is done taking advantage of 
lower hourly electricity prices to operate non-priority loads 
that consume high power ensuring that the constraint in 
equation 3b is satisfied. Tables 2a and 2b give the original and 
recommended schedules respectively, with the committed 
units on the sample day. 

Table 2a: Unit commitment original schedule for 20th January 2020 

 
 

A B C D E F G H I J K L M N O P Q R S T

12:00:00 AM 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 7273.8075 7091.01503

1:00:00 AM 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 6932.445 6467.42437

2:00:00 AM 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 6703.13 6328.09702

3:00:00 AM 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 6767.79 6180.76182

4:00:00 AM 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 6576.12 6381.81024

5:00:00 AM 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 7115.81 6118.72389

6:00:00 AM 1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 7503.5 6939.60512

7:00:00 AM 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 7862.55 7264.51065

8:00:00 AM 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 7730.58 7551.15541

9:00:00 AM 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 7726.565 7161.63965

 10:00:00 AM 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 7406.315 7221.86571

11:00:00 AM 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 6928.89 6751.10766

  12:00:00 PM 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 6664.77 6269.7272

1:00:00 PM 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 6634.25 6098.3181

2:00:00 PM 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 6560.34 6210.79476

3:00:00 PM 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 6444.8 6169.42248

4:00:00 PM 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 6596.685 6031.46777

5:00:00 PM 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 7305.875 6293.85149

6:00:00 PM 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 8061.255 7221.02313

7:00:00 PM 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 7872.41 7942.19119

8:00:00 PM 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 7509.5875 7302.60927

9:00:00 PM 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 7251.3 6823.64296

10:00:00 PM 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 7190.4 6622.4469

  11:00:00 PM 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 5909.995 6663.47962

170529.17 161106.691

Hourly 
Energy Cost 
using Actual  

Prices ($) 

Hourly 
Energy 

Cost using 
Predicted 
Prices ($)

Total Energy Cost

Time

Unit Commitment - O riginal Schedule
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Table 2b: Unit commitment proposed schedule for 20th January 2020 

 
 

Table 2c shows the comparison between the total 
energy cost using the original and the proposed schedules for 
the sample day.  
 
Table 2c: Comparing energy cost incurred using the original and proposed 

schedules for 20th January 2020 

  

Total Energy 
Cost Using 
Actual 
Prices ($) 

Total Energy 
Cost Using 
Predicted 
Prices ($) 

Original schedule 170529.17 161106.6915 

Proposed schedule 142920.77 134695.2965 
Cost saving 
achieved using 
proposed schedule 27608.4 26411.395 
% cost saving 16.18984013 16.39372937 

 
Adopting the recommended schedule given in Table 

2b yields a potential energy cost saving of $ 8225.47 on that 
sample day for 24 hours industrial operations. Considering 30 
working days monthly and a similar energy cost saving per 
day, the annual energy cost savings is $2,961,169.20 which 
is a huge cost that industries can save on if they put in place 
an industrial EMS.  Additionally, based on Table 2c, running 
the machines using the proposed schedule results in an energy 
cost saving of approximately 16% whether the actual or 
predicted hourly electricity prices are used in the cost 
estimation.   

Economic viability of an industrial EMS: The 
economic analysis of investing in an industrial EMS is done 

using CBA, PBP, and ROI. Table 3 summarizes the total cost 
of setting up the EMS which includes internal costs incurred 
by the company, cost of hiring external experts, and cost of 
purchasing energy monitoring equipment. 
 

Table 3: Cost of setting up the industrial EMS 

Category Activity Cost ($) 

Staff time EMS training    200,000 

EMS set up    900,000 
EMS 
implementation 

   400,000 

Expert support International 
experts 

 1,000,000 

Local consultants     150,000 
Other 
operational 
expenses 

Extra energy 
monitoring 
equipment 

10,000,000 

Other low cost 
expenses 

     350,000 

Total 13,000,000 
 

Using the capital investment of $13,000,000 and the 
annual energy cost saving for year 1 ($2,961,169.20), a PBP 
of 4.39 years and an ROI of 0.2278 are obtained. The non-
energy benefits were overlooked in this case however 
quantifying them and considering the future value of energy 
cost savings would lead to the realization of a more 
reasonable cost to benefit ratio as well as ROI. 

V. CONCLUSION AND RECOMMENDATIONS 
 Load scheduling which is a DSM technique is used 

in designing an EMS where suitable operation times are 
suggested to the consumer based on the predicted hourly 
electricity prices. The usage of non-priority loads with high 
consumption is shifted to time periods where electricity prices 
are low. A unit commitment schedule is generated to enable 
the consumer to easily make a choice on loads whose use can 
be shifted. This operation schedule ensures that all priority 
loads are on at all times and the power balance constraint is 
always satisfied. Using the recommended operation schedule 
results in potential energy cost savings since the TOU of non-
priority loads is shifted to a more effective time period. With 
the proposed schedule, energy cost savings of 16.19% and 
16.39% are obtained using the actual and predicted hourly 
electricity prices respectively. 

The LSTM –RNN is used due to its effectiveness in time 
series forecasting especially when dealing with non-stationary 
and non-linear data compared to conventional techniques such 
as ARIMA. The use of a MSE loss function made it possible 
to track the error value and ensure that it’s minimum by 
increasing the number of epochs. The predicted hourly 
electricity prices have been successfully used to schedule the 
available loads on one sample day. Testing the effectiveness 
of the designed model using an IEEE 30 bus system with 20 
loads yielded an annual energy cost saving of $2,961,169.20. 
Long term use of an industrial EMS is likely to yield huge 
energy and cost savings. 

The designed industrial energy management model 
enables users to actively manage their energy consumption by 
shifting the use of non-priority loads to off peak durations. The 

A B C D E F G H I J K L M N O P Q R S T

12:00:00 AM 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 5841.8275 5695.02102

1:00:00 AM 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 6220.2075 5802.96296

2:00:00 AM 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 6378.785 6021.89878

3:00:00 AM 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 6642.75 6066.56761

4:00:00 AM 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 5891.1075 5717.03834

5:00:00 AM 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 7165.34 6161.31362

6:00:00 AM 1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 5898.1 5454.8524

7:00:00 AM 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 5467.215 5051.36904

8:00:00 AM 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 5117.68 4998.90008

9:00:00 AM 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 5591.355 5182.54485

 10:00:00 AM 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 5151.465 5023.17123

11:00:00 AM 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 5936.725 5784.39975

  12:00:00 PM 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 6258 5887.0678

1:00:00 PM 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 6587.42 6055.27115

2:00:00 PM 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 6297.3075 5961.77705

3:00:00 PM 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 6353.6 6082.11933

4:00:00 PM 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 6659.065 6088.50293

5:00:00 PM 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 6561.4375 5652.53487

6:00:00 PM 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 5654.34 5064.98305

7:00:00 PM 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 5055.505 5100.31709

8:00:00 PM 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 5226.3875 5082.33852

9:00:00 PM 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 5645.655 5312.69345

10:00:00 PM 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 6368.64 5865.59582

  11:00:00 PM 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 4950.855 5582.05572

142920.77 134695.296

Hourly 
Energy Cost 
using Actual 

Prices ($) 

Hourly 
Energy 

Cost using 
Predicted 
Prices ($)

Total Energy Cost

Potential saving upon implementing EMS
8225.473544

Time

Unit Commitment - Proposed Schedule
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system generates automated unit commitment schedules daily 
based on the hourly predicted prices thereby improving energy 
performance and saving on cost. Taking into consideration the 
non-energy benefits of implementing an EMS as well as the 
future savings to be yielded by the EMS would help in 
obtaining a shorter PBP and a higher ROI to justify the 
investment. 

 Further research can consider other inputs that affect 
demand in the LSTM network when developing the 
forecasting model. Moreover, other DSM techniques can be 
taken into account when developing the EMS. It would be 
beneficial to also design an EMS that integrates the 
management of other forms of energy rather than electrical 
energy. 
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