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Abstract

Tuberculosis is the most common opportunistic infection associated with HIV/AIDS, and remains a disease of
global significance. Co-infection with HIV complicates proper TB diagnosis and therapeutic outcomes. Profound
immunosuppression characterizes HIV/TB co-infection prompting early initiation of HAART during TB treatment.
Effective management of the co-infection requires concomitant administration of ART and anti-tuberculosis drugs;
however, this therapeutic approach has had its fair share of challenges including: overlapping drug toxicities, drug-
drug interactions and immune reconstitution reactions. For instance, combination of nevirapine-based ART and
rifampicin-based TB treatment is reported to cause hepatotoxicity in healthy volunteers. As such, this review
compiles information from multiple studies describing drug interactions associated with co-treatments, with a view to
improving management of these co-morbidities.
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Introduction
Tuberculosis (TB) and HIV remain the main cause of high

infectious disease burden globally. Sub-Saharan Africa is worst hit by
the HIV epidemic and accounts for an estimated 24.7 million cases,
compared to global reports indicating 35 million people living with
HIV (PLWH) (Figure 1) [1]. TB is the most common presenting illness
among PLWH, with both co-morbidities leading to increased
morbidity and mortality worldwide [2]. In 2013, global prevalence of
HIV/TB stood at 14 million, with 9 million new cases and 1.5 million
reported deaths during the same year (Figure 2) [3].

Human Immunodeficiency Virus (HIV) is a major confounder to
proper diagnosis and management of TB [4]. This has necessitated the
development of highly sensitive tests, including but not limited to;
culture systems and nucleic acid amplification assays that are superior
to sputum smear microscopy [5]. Interestingly, patients presenting
with HIV are at higher risk of developing Multi-Drug Resistant TB
(MDR-TB), arguably due to high pill burden, undesired side effects
and poor adherence [6].

Currently, there is no defined drug for the cure of HIV infection.
Combined Antiretroviral Therapy (cART), also known as Highly
Active Antiretroviral Therapy (HAART) is a regimen that merges at
least three antiretroviral drugs from different classes of ART in the
treatment of HIV [7]. Atleast six categories of ART exist including;
Protease Inhibitors (PI’s), Nucleoside and Nucleotide Reverse
Transcriptase Inhibitors (NRTI’s, NtRTI’s), Non-Nucleoside Reverse
Transcriptase Inhibitors (NNRTI’s), Fusion Inhibitors (FI’s), Integrase
Strand Transfer Inhibitors (INSTI’s), and Chemokine Receptor
Antagonists (CRAs) [8]. Like most other treatment agents HAART is
associated with a number of adverse effects including; hepatotoxicity,
hypersensitivity rash, lactic acid, osteoporosis, lypodystrophy and
metabolic complications (Table 1) [9].

A) RMP-based TB regimen 

Recommended dose Nucleoside backbone*

NNRTI

EFV 600 or 800 mg/qd 2 NRTI/NtRTIs

NVP 200 mg bid 2 NRTI/NtRTIs
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PI    

SQV/r 400/400 mg bid or 1000/100 mg bid 2 NRTI/NtRTIs  

LPV/r 400/400 mg bid   

    

B) RBT-based TB regimen 

 Recommended dose Nucleoside backbone* Recommended RBT dose

PI or NNRTI    

IDV 1000 mg tid 2 NRTI/NtRTIs 150 mg qd or 300 mg 3×/week

NFV 1000 mg tid 2 NRTI/NtRTIs 150 mg qd or 300 mg 3×/week

APV 1200 mg bid 2 NRTI/NtRTIs 150 mg qd or 300 mg 3×/week

ATV 400 mg qd 2 NRTI/NtRTIs 150 mg qd or 300 mg 3×/week

LPV/r 400/100 mg bid 2 NRTI/NtRTIs 150 mg qd or 300 mg 3×/week

FPV 1040 mg bid 2 NRTI/NtRTIs 150 mg qd or 300 mg 3×/week

RTV combined with ATV,    

APV, IDV, FPV, SQV  2 NRTI/NtRTIs 150 mg qod or 150 mg 3×/week

NVP 200 mg bid 2 NRTI/NtRTIs 300 mg qd or 300 mg 3×/week

EFV 600 mg qd 2 NRTI/NtRTIs 600 mg qd or 600 mg qod

    

C) Non-rifamycin-based TB regimen 

 Usual dose Nucleoside backbone*  

PI    

IDV 800 mg tid 2 NRTI/NtRTIs  

NFV 1250 mg bid or 750 mg tid 2 NRTI/NtRTIs  

APV 1200 mg bid 2 NRTI/NtRTIs  

ATV 400 mg qd 2 NRTI/NtRTIs  

LPV/r 400/100 mg bid 2 NRTI/NtRTIs  

FPV 1400 mg bid 2 NRTI/NtRTIs  

SQV (soft gel capsule) 1200 mg tid 2 NRTI/NtRTIs  

RTV boosted PI    

ATV/r 300/100 mg bid 2 NTRI/NtRTIs  

AMP/r 600/100 mg bid or 1200/200 mg qd 2 NTRI/NtRTIs  

IDV/r 400/400 or 800/100 or 800/200 mg bid 2 NTRI/NtRTIs  

FPV/r 700/100 mg bid or 1400/200 mg qd 2 NTRI/NtRTIs  

SQV/r 400/400 mg or 1000/100 bid or 1600/200 qd 2 NTRI/NtRTIs  

NNRTI    

NVP 200 mg bid 2 NTRI/NtRTIs  
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EFV 600 mg bid 2 NTRI/NtRTIs  

Table 1: Recommended doses of antiretroviral and RBT-based regimens that can be co-administered in HIV-1 and TB combined therapy.

Multivariate drug factors and HIV/TB co-infections have
confounded the management of both diseases resulting in various
clinical implications including; liver impairment, renal failure and
cardiovascular disorders. Therefore, this review summarizes data on
HAART and anti-tuberculous drug interactions, adverse reactions and
host toxicity.

Figure 1: Estimated HIV prevalence in new and relapse TB cases,
2014 [10].

Figure 2: Geographic distribution of the estimated number of
human immunodeficiency virus (HIV)-positive tuberculosis cases.
For each country (red circles) and World Health Organization
region (gray circles), the number of incident tuberculosis cases
arising in people infected with HIV is shown as a percentage of the
global total of such cases. Note: AFR, African region; AMR,
American region; DR Congo, Democratic Republic of the Congo;
EMR, Eastern Mediterranean region; EUR, European region; SEAR,
Southeast Asian region; TB, tuberculosis; UR Tanzania, United
Republic of Tanzania; WPR, Western Pacific region [11].

Metabolism of Antiretroviral Drugs
Nucleoside reverse transcriptase inhibitors constitute the backbone

of ART regimens. Some commonly used NRTIs including Abacavir
(ABC) and Zidovudine (AZT) are metabolized via hepatic
glucuronidation and are phosphorylated into their active triphosphate
form [12,13]. These drugs are substrates for phase II metabolizing
enzymes that do not involve the CYP450 system, thus, they are less
prone to interactions with CYP450 substrates such as isoniazid [14].

Non-nucleoside reverse transcriptase inhibitors are usually co-
administered with NRTIs for HIV treatment in resource-limited
settings. Unlike NRTIs, NNRTIs are not activated by phosphorylation
but are metabolised by the CYP450 system, leading to various drug-
drug interactions form [15]. Efavirenz (EFV), an NNRTI is
metabolized to inactive hydroxylated metabolites by CYP3A4 and
CYP2B6 [16]. Studies have shown EFV to be both an inducer and
inhibitor of CYP3A4, thus affects metabolism of many other drugs
metabolized by the same isoenzyme [17]. Another NNRTI, Nevirapine
(NVP) is eliminated via CYP3A4 and CYP2B6 isoenzymes and
induces CYP3A4 [18].

Protease inhibitors are recommended as second-line ARV regimens
in some resource-constrained setups. All PIs are extensively
metabolized by CYP3A4 isoenzyme, with Ritonavir (RTV) having the
most pronounced inhibitory effect and Saquinavir (SQV) the least [19].
The potent CYP3A4 inhibitory properties of RTV have been
pharmacologically used to boost the concentrations of other PIs when
used in combination [20]. Thus, when used as a booster, RTV acts as a
therapeutic enhancer rather than as antiviral agent.

Despite integrase inhibitors being limited in developing countries,
this review highlights their metabolism and subsequent drug
interactions with anti-TB agents. Enfuvirtide, a synthetic peptide
fusion inhibitor is shown to be metabolized by proteolytic hydrolysis
without involment of the CYP450 system, thus is less prone to
interactions with CYP450 substrates [21]. On the other hand,
Maraviroc (MVC) is a substrate of CYP3A4, and dosage adjustments
have been recommended in presence of drugs that alter action of this
isoenzyme. For instance, the dosage of maraviroc should be increased
if combined with CYP3A4 inducers such as Rifampicin (RMP) [22].
The only well characterized integrase strand transfer inhibitor is
Raltegravir (RAL) that is reported to be metabolized by
glucuronidation and does not interact with CYP450 enzymes [23]. As
such, RAL is expected to have minimal drug-drug interactions.
However, recent studies indicate potential drug-drug interactions with
strong CYP450 inducers such as RMP [24]. Therefore, raltegravir is
recommended not to be co-administared with RMP since it lowers
raltegravir plasma concentrations.

Metabolism of anti-tuberculosis drugs
First-line anti-tubercular drugs include isoniazid, rifampicin,

pyrazinamide, ethambutol and streptomycin, with isoniazid and
rifampicin identified as the most active agents [3]. Following instances
of resistance to first-line agents and serious drug reactions, second line
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drugs including fluoroquinolones, cycloserine and kanamycin may be
administered [11,25].

Isoniazid (INH), a highly potent anti-tubercular agent, undergoes
metabolism in the liver by acetylation through the genetically
polymorphic N-acetyltransferase 2 (NAT2) enzyme. INH is
metabolized internally to acetylisoniazid, and then undergoes
hydrolysis to isonicotinic acid and acetylhydrazine [26,27]. The drug is
a substrate for phase II metabolic enzymes and does not interact with
CYP450 system, thus, is not prone to cross-reactions with the CYP450
substrates [28].

Rifampicin, an anti-TB drug is metabolized by human carboxyl
esterase (CES) via deacetylation within liver microsomes [29]. Hence,
the drug is an N-acetyltransferase inhibitor that causes decreased
acetylation ratio in fast acetylators. Additionally, both RMP and
rifabutin are known potential inhibitors of β-subunit-dependent DNA-
RNA polymerase which limits DNA formation by M. tuberculosis [30].
As a strong inducer of most CYP450 isoforms including CYPs 1A2,
2C9, 2C19, 2D6, and 3A4, RMP is reported to hasten elimination of
many drugs such as protease inhibitors and some NNRTIs that are also
substrates of CYP450 enzymes [20,31].

Pyrazinamide and ethambutol also make up essential medications
in TB therapy. The former is primarily eliminated by hepatic
metabolism and involves two pathways that differ by the order of
succession of enzymatic sequences but yields similar end products
comprising 5-hydroxypyrazinoic acid and pyrazinoic acid [32].
Antimicrobial potency of pyrazinamide has been suggested to be
mediated through its conversion to pyrazinoic acid by the amidase
activity of intracellular tubercle bacilli and subsequent entrapment in
phagosomes [33]. On the other hand, ethambutol is poorly
metabolized and upto 80% undergoes renal clearance [34], but during
instances of renal insufficiency it may accumulate in patients thus
heightening nephrotoxicity [35].

Potential Clinical Risks of Drug Interactions

Drug-drug interactions
Most clinically important drug-drug interactions occur during

metabolism of drugs. Numerous phase I metabolic processes take place
in the hepatic microsomes via Cytochrome P450 (CYP450) family of
heme-containing mono-oxygenases [36]. Previous reports indicate that
drugs inducing or inhibiting CYP450 enzymes may either decrease or
increase concentrations of concurrently administered drugs [37].
Therefore, changes in drug concentrations resulting from drug
interactions may bring about treatment failure or toxicities.

For instance, RMP-based anti-tuberculous therapy induces multiple
genes that control drug metabolism and transport including;
cytochrome P450 isoenzymes and the drug efflux pump p-glycoprotein
[38]. Thus, RMP has the potential to reduce plasma concentrations of
concomitantly administered antiretroviral agents that eventually
results in inadequate plasma levels and poor ART outcomes. Previous
studies documented marked reduction in EFV concentrations
following RMP-based TB therapy due to induction of CYP2B6 and
CYP3A5 isoenzymes [39,40]. Similarly, plasma NVP levels decline
significantly following concomitant use with RMP in treatment of
HIV-1 and TB co-infection [41]. Hence co-administration of
NVP/EFV and RMP during combined therapy requires utmost
consideration in order to avoid lowering treatment efficacy.

Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor
(NNRTI) that is also used alongside TB therapy has been implicated
with teratogenic effects during pregnancy [42]. As a result, EFV is
substituted with alternative regimen if available, especially in resource-
constrained settings. On the other hand, cytochrome P450 2B6 516
G>T gene polymorphism exhibits dominance among Africans and
impairs metabolism of EFV thereby maintaining high concentrations
at EFV standard doses even during co-treatment of TB [41,43].

Nevirapine, a potent NNRTI and RMP, a first line anti-tubercular
drug are both used in HIV and TB co-infected patients [44]. However,
concurrent use of both therapeutic agents is not recommended
because RMP is a potent inducer of hepatic CYP450, which in turn,
interferes with metabolism of NVP [45]. Prior studies suggest that
oxidative metabolism of NVP is mediated primarily by CYP isozymes
from the CYP3A4 family [46]. By inducing the expression of CYP3A4
isoenzyme in the liver, RMP greatly reduces the plasma concentration
of NVP upon concurrent administration [45].

Protease inhibitor-based antiretroviral regimens such as Lopinavir-
Ritonavir (LPV/r) and Darunavir (DRV) are important option for the
treatment of HIV infection [47]. However, studies have demonstrated
that co-administration of PIs with RMP reduces PIs systemic
concentration to less than 75% thereby compromising HIV treatment
efficacy [48]. In order to evaluate how to boost the PIs plasma
concentrations when concurrently administered with RMP, several
studies have been conducted to assess either higher doses of the PI or
of the pharmacologic boosting agent, RTV, or both [48,49]. These
studies indicate that PIs plasma concentrations could be boosted by
two methods; super-boosting, (administering PI with higher dose of
RTV) and double dosing, (doubling the dose of both the PI and RTV).
Although these strategies may result in adequate protease inhibitor
concentrations, clinical reports have documented increased
hepatotoxicity [49,50].

Among the rifamycins, the drug RMP has earlier been shown to be
the most powerful inducer of CYP3A4 [51], hence responsible for
clinically important interactions with PIs and NNRTIs. However, other
than RMP, the anti-tubercular agent RBT also induces CYP3A4
isoenzyme but to a lesser magnitude [52]. Interestingly though, RBT is
also a substrate of the enzyme unlike RMP [53]. As such, inhibitors of
CYP3A4 including PIs and NNRTIs will essentially elevate plasma
concentrations of RBT, with no effect on RMP metabolism. For
instance, concomitant administration of RBT with NVP (NNRTI) or
RTV (PI) results in elevated systemic levels of RBT [54]. Thus dose
adjustments of RBT are required in order to control toxicity [55].

Antiretroviral backbone regimen that comprises of NNRIs
including; AZT, TDF, 3TC, ABC and ddl among others, have been
described not to elicit major clinically significant drug interactions
with various anti-TB regimen specifically RBT and the commonly used
RMP [12]. However, previous studies conducted by Burger et al.
documented notable drug interactions between RMP and AZT. The
continuous administration of both AZT and RMP regimens
concurrently, lead to marked clearance of plasma AZT levels with
subsequent therapeutic implications [56]. This activity may result from
RMP CYP450 powerful inducing capacity. Contrastingly, other reports
document AZT substantially lowering systemic levels of pyrazynamide,
also an anti-tuberculosis agent [57], which may be owed to the fact
that pyrazinamide is a less potent inducer of CYP450 as compared to
RMP.
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Complex toxic effects
Toxicity profiles of antiretrovirals and anti-tuberculosis drugs

overlap making it complex to identify the exact causative agent [58].
More importantly, concomitant administration of NNRTIs and
boosted PIs, with TB treatment has been shown to accelerate drug
induced liver injury (DILI), which may heighten drug resistance and
ultimate treatment failure [59-61]. Similarly, co-administration of
aminoglycosides such as: kanamycin and amikacin used for drug-
resistant TB, and tenofovir (TFV) an NRTI aggravates nephrotoxicity
[62,63].

Among the identified predictors of anti-tubercular and
antiretroviral associated DILI include; slow acetylation status,
increased baseline liver aminotransferases, reduced haemoglobin and
albumin levels, marked elevation of plasma efavirenz concentration
and also CYP2B6*6/*6 and ABCB13435TT genotypic characterization
[59]. On the whole, impaired liver functions greatly complicate the
management of the co-epidemic and may necessitate withdrawal of
hepatotoxic antiretrovirals and TB drugs [64], a clinical practice which
though necessary in case of severe toxicities, tends to worsen
prognosis.

Shared adverse drug effects
Adverse drug reactions resulting from concurrent treatment of HIV

and TB are common among the dual infections, and predispose
patients mainly to liver damage due to shared metabolic pathways
[65,66]. A high incidence of peripheral neuropathy (55%) has been
documented in patients undergoing both d4T and INH treatment [67],
that may be as a consequence of additive toxic effects from both
therapeutic agents. To add further, individuals on INH treatment
should closely be monitored and require administration of
supplemental pyridoxine therapy in order to minimize risk of INH-
related CNS/neurotoxicity) [68]. On the other hand, concomitant use
of both NVP and anti-TB drugs especially RMP subjects multiple
overlapping toxicities including hypersensitivity skin rash and hepatitis
[44,69,70].

The risk of hepatotoxicity is up-regulated during antiretroviral and
anti-TB therapy, hence the need to screen for pre-existing liver diseases
including; hepatitis B and C before HAART or anti-TB
commencement [71]. In individuals exhibiting abnormal baseline
hepatic transaminases, an elevation of two-to three fold above
abnormal baseline levels should be adopted as threshold for

hepatotoxicity [72]. On the other hand, AZT administration has been
discouraged in patients with low haemoglobin levels (<8 g/dl) due to
likelyhood of developing AZT associated anaemia [73]. The
antiretroviral drug is also implicated with inducing myelosuppression
in HIV positive patients [74]. Finally, gastrointestinal disturbances
including malabsorption are reported with all first line anti-TB drugs
and various antiretroviral regimen including NVP, that may possibly
be attributed to presence of gastrointestinal disease (Tables 2 and 3)
[75].

Toxicity/side effect
Antiretroviral
drugs Anti-tuberculosis drugs

Skin rash
ABC, NVP, EFV,
APV, FPV

INH, RMP, pyrazinamide,
quinolones

Peripheral
neuropathy d4T, ddl, ddC INH, cycloserine, ethambutol

CNS toxicity EFV
INH, streptomycin, quinolones,
cycloserine

Hepatotoxicity
EFV, NVP, all PIs
and NRTIs RMP, RBT, INH, pyrazinamide

Anaemia,
neutropenia AZT RMP, INH

Bone marrow
suppression AZT RBT, RMP

Ocular effects ddl, RBT, ethambutol

Nausea, vomiting RTV, IDV, AZT
RMP, quinolones, ethionamide,
pyrazinamide

GIT side effects All All

Hepatitis NVP, PIs
RMP, INH, ethinamide,
pyrazinamide

Note: NVP: Nevirapine; EFV: Efavirenz: ABC: Abacavir; APV: Amprenavir; FPV:
Fosamprenavir; d4T: Stavudine; ddl: Didanosine; ddC: Zalcitabine; AZT:
Zidovudine; INH: Isoniazid; RMP: Rifampicin; RBT: Rifabutin; PIs: Protease
inhibitors; NRTIs: Nucleoside reverse transcriptase inhibitors; GIT:
Gastrointestinal tract [44,70].

Table 2: Overlapping or additive adverse effect profiles due to
antiretroviral and anti-tuberculosis agents.

Event/issue Management suggestion (s)

Overlapping side effect profiles of antiretrovirals and anti-tuberculosis drugs Defer ART until there has been time to identify and manage side effects from anti-
tuberculosis drugs (1-2 mo)

Drug interactions between rifamycins and antiretroviral agents (HIV-1 PIs and
NNRTIs)

Use RBT with recommended dose adjustments in Table 1. Use RMP with EFV
and RTV (at doses of >400 mg bid

Paradoxical reactions after initiating antiretroviral treatment Delay ART until after TB treatment if CD4 cell count is relatively high (>300µL)

In patients with low CD4 cell counts, defer ART until TB is substantially improved
(2 mo)

Schedule clinical follow-up soon after onset of ART to detect paradoxical reactions
and/or drug side effects early
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Note: HIV-1: Human immune deficiency virus type 1; TB: Tuberculosis; ART: Antiretroviral therapy; PIs: Protease inhibitors; RBT: Rifabutin; RMP: Rifampicin; EFV:
Efavirenz; RTV: Ritonavir; mg: Milligram; bid: Twice daily; mo: Months; µL: Microlitre [76].

Table 3: Summarized management recommendations for ART use in HIV and TB co-infected patients.

Tuberculosis Immune Reconstitution Inflammatory
Syndrome (TB-IRIS)

Immune Reconstitution Inflammatory Syndrome (IRIS) is the
transient deterioration of signs and symptoms of tuberculosis after
initiation of ART, despite reduction in HIV viral load and
immunological recovery [77,78]. Two forms of IRIS exist: Paradoxical
TB-IRIS which occurs in patients diagnosed with TB and already
established on TB treatment prior to ART, and they present with
recurrent or new TB; unmasking TB-IRIS occurring in patients not on
TB treatment when they initiate ART, a form characterized by an
unusually high inflammatory response of TB [78,79]. Pronounced IRIS
features comprise: recurrent TB symptoms, lymph node enlargement,
fever, cold abscess, worsening respiratory signs and central nervous
system lesions [77]. Abdominal manifestations have also been reported
and include intestinal lesions, splenic and hepatic derangements,
peritonitis, ascites as well as lymphadenopathy [77,80]. Hepatic
features frequently occur in about 21-56% of TB-IRIS patients, and is
usually difficult to differentiate with drug-induced hepatitis. Major
clinical features are liver enlargement, liver functional derangements
and granulomatous hepatitis [81,82].

New cases of paradoxical TB-IRIS account for 8-43% among
patients who initiate ART while on TB therapy. Key risk factors for this

condition are low CD4+ T cell counts, disseminated TB and short
interval between starting TB treatment and ART [83,84].
Contrastingly, a study carried out among Ugandan patients found no
significant association between interval of starting treatment of the
dual infections and the development of TB-IRIS. The study reported
that delaying ART until 2 months of TB treatment did not appear to
deter paradoxical TB-IRIS [85]. These observed variations may results
in distinct mechanisms of immune activation that are differentially
affected by antiretroviral treatment. On the other hand, fatalities
associated with paradoxical TB-IRIS are rare, only exceptionally
reported in cases where central nervous system is affected [86].

Diagnosis of paradoxical TB-IRIS is complicated by the lack of
confirmatory diagnostic tests [87]. Opportunistic infections,
malignancies and drug resistance have to be excluded during
assesment. However, in resource-challenged settings, a diagnosis of
TB-IRIS can also be performed based on case definition as
recommended by the International Network for the Study of HIV-
associated IRIS (INSHI) [78]. On the other hand, management of
paradoxical TB-IRIS can be done using non-steroidal anti-
inflammatory drugs (NSAIDs) and steroids [83] (Table 4).

Study no. Study, year Years
studied

Incidence,

proportion, %

Median

Age of
patients,
years

Median

CD4 cell
count,
cells/µL

Median Viral
load, log10
copies/mL

Median time,
days from TB
diagnosis and
treatment to
IRIS

Median

time, days from
ART start to
development of IRIS

1. Narita et al. 1998 [5] 1996-1997 12/33 (36) 40a 51a 5.80 109a 15a

2. Breton et al. 2004
[6]

1996-2001 16/37 (43) 35 100 5.36 48 12

3. Breen et al. 2004 [7] 14/50 (28) 36 N/A N/A 33 11

4. Kumarasamy et al.
2004 [8]

2000-2003 11/144 (8) 29 123 N/A 42 22

5. Lawn et al. 2007 [9] 2002-2005 19/160 (12) 35 68 4.84 105 14

Note: ART: Antiretroviral therapy; NA: Not available; TB: Tuberculosis; HIV: Human immunodeficiency virus; aMean.

Table 4: Incidences of tuberculosis-immune reconstitution inflammatory syndrome (IRIS) in HIV-TB co-infection.

Conclusions and Future Directions
This review compiles data from various sources on multiple adverse

drug effects stemming from concomitant use of ART and anti-
tuberculosis drugs. These include; d4T and INH-induced peripheral
neuropathy, NVP and RMP associated hypersensitivity rash and AZT
induced myelosuppression among others. However, these adverse
effects require to be ascertained through appropriate clinical
examination for specific signs and symptoms that will eventually aids
in improved patient management. Equally, although ART and anti-
tuberculosis regimen improves patient outcomes, several drug-drug

interactions have been documented during the concurrent use of both
therapeutic agents. Nonetheless, these interactions subject patients to
overlapping toxicities with associated clinical implications. As such,
more investigations on actual pharmacokinetic mechanisms behind
drug interaction is necessitated, while also factoring in patient safety
and treatment efficacy. Several clinical trials may generate answers to
these concerns.
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