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Abstract. This paper focuses on the properties of the essential maximal numerical range of Aluthge
transform T̃ . For instance, among other results, we show that the essential maximal numerical range
of Aluthge transform is nonempty and convex. Further, we prove that the essential maximal numerical
range of Aluthge transform T̃ is contained in the essential maximal numerical range of T . This study
is therefore an extention of the research on Aluthge transform which was begun by Aluthge in his
study of p−hyponormal operators.
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Introduction

LetB(X) denote the algebra of bounded linear operators acting on a complex Hilbert spaceX . Let us
recall that the Aluthge transform T̃ of T is the operator |T | 12U |T | 12 . Here, we denote by T the bounded
linear operator on a complex Hilbert space X and let T = U |T | be any polar decomposition of T
with U a partial isometry and |T | = (T ∗T )

1
2 . Recall also that if kerT is the kernel of a bounded linear

operator T then a bounded linear operator T ∈ B(X) is said to be an isometry if ∥Tx∥ = ∥x∥ ∀x ∈ X .
We say that T is a partial isometry if it is an isometry on the orthogonal complement of its kernel, that
is, for every x ∈ ker(T )⊥, ∥Tx∥ = ∥x∥.

After its conception in 1900 by Aluthge [1], the notion of Aluthge transform and the study of
its properties with their generalizations has attracted the attention of many authors such as in [5], [6]
among others. This extensive research is because Aluthge transform is a very useful tool for studying
some operator classes. Especially, it is used by many researchers in the study of p−hyponormal and
semi­hyponormal operators. In 2007, Guoxing Ji, Ni Liu and Ze Li [6] together showed that the es­
sential numerical range of Aluthge transform is contained in the essential numerical range of T . It is
also known that spectrum of the normal operator T coincides with the spectrum of Aluthge transform
T̃ , that is, σ(T ) = σ(T̃ ). See [5] for this and more. Aluthge transform T̃ of an m−tuple operator
T = (T1, ..., Tm) ∈ B(X) was studied in [2], [3] and [4] and interesting results established.

Essential Maximal Numerical Range of Aluthge Transform

This section establishes some of the properties of the essential maximal numerical range of Aluthge
transform. If T = U |T | is any polar decomposition of an operator T ∈ B(X)withU a partial isometry
and T̃ = |T | 12U |T | 12 then we denote the essential maximal numerical range of Aluthge transform as
MaxWe(T̃ ) and define it as

MaxWe(T̃ ) = {r ∈ C : ⟨T̃ xn, xn⟩ → r, xn → 0 weakly and ∥T̃ xn∥ → ∥T̃∥e}.

Theorem1. Let T = U |T | be any polar decomposition of an operator T ∈ B(X). If r ∈MaxWe(T̃ )
for any r ∈ C, then there exists an orthonormal sequence {xn} ∈ X such that
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⟨T̃ xn, xn⟩ → r and ∥T̃ xn∥ → ∥T̃∥e.

Proof. Suppose r ∈MaxWe(T̃ ). Then there is a sequence {xn} of vectors such that

⟨T̃ xn, xn⟩ → r, ∥xn∥ = 1, xn → 0 weakly and ∥T̃ xn∥ → ∥T̃∥e.

Choosing the set {x1, ..., xn} which satisfy |⟨T̃ xn, xn⟩ − r| < 1
i
∀i and letting M be the subspace

spanned by x1, ..., xn and P be the projection onto M then we have ∥Pxn∥ → 0 as n → ∞. Let
zn = ∥(I − P )xn∥−1((I − P )xn).We obtain T̃ zn = ∥(I − P )xn∥−1(T̃ (I − P )xn). This gives
⟨T̃ zn, zn⟩ = ⟨∥(I − P )xn∥−1(T̃ (I − P )xn), ∥(I − P )xn∥−1(T̃ (I − P )xn)⟩

= ∥(I − P )xn∥−2{⟨T̃ xn, xn⟩ − ⟨T̃ xn, Pxn⟩ − ⟨T̃Pxn, xn⟩+ ⟨T̃Pxn, Pxn⟩} → r

as n → ∞.

We then choose n large enough such that |⟨T̃ zn, zn⟩ − r| < 1
n+1

. If we let zn = xn+1 we get
|⟨T̃ xn+1, xn+1⟩ − r| < 1

n+1
which completes the proof.

Lemma2. Suppose T ∈ B(X), ∥T∥ = 1, ∥xn∥ = 1 and T = U |T | any polar decomposition of an
operator T ∈ B(X). If ∥T̃ xn∥2 ≥ (1− ϵ), then ∥

(
T̃ ∗T̃ − I

)
xn∥2 ≤ 2ϵ.

Proof. Since T̃ ∗T̃ − I ≥ 0 it follows that,

∥
(
T̃ ∗T̃ − I

)
xn∥2 = ∥T̃ ∗T̃ xn∥2 − 2∥T̃ xn∥2 + ∥xn∥2

≤ 2
(
1− ∥T̃ xn∥2

)
≤ 2ϵ.

Theorem3. Let T = U |T | be any polar decomposition of an operator T ∈ B(X). Suppose that for
a point r ∈ C there exists an orthonormal sequence {xn} ∈ X such that

⟨T̃ xn, xn⟩ → r and ∥T̃ xn∥ → ∥T̃∥e. Then r ∈MaxWe(T̃ )

Proof. Assume without loss of generality that for a point r ∈ C there exists an orthonormal sequence
{xn} ∈ X such that ⟨T̃ xn, xn⟩ → r and ∥T̃ xn∥ → ∥T̃∥e. Since ∥xn∥ = 1 and every orthonormal
sequence {xn} converges weakly to zero, it implies that r ∈ MaxWe(T̃ ).

Theorem4. The set MaxWe(T̃ ) is nonempty and convex.
Proof. Weprove thatMaxWe(T̃ ) is nonempty. To do this, fromTheorem 1, there exists an orthonormal
sequence {xn} ∈ X such that ⟨T̃ xn, xn⟩ → r and ∥T̃ xn∥ → ∥T̃∥e. Thus the sequence {⟨T̃ xn, xn⟩} is
bounded. Choose a subsequence and assume that ⟨T̃ xn, xn⟩ converges. Then MaxWe(T̃ ) is nonempty

To show convexity, let r, µ ∈MaxWe(T̃ ). Since r, µ ∈MaxWe(T̃ ), it implies that there exist orthonor­
mal sequences xn, yn ∈ X such that ∥xn∥ = 1 = ∥yn∥, ⟨ T̃ xn, xn⟩ → r and ∥T̃ xn∥ → ∥T̃∥e. Also
⟨T̃ yn, yn⟩ → µ and ∥T̃ yn∥ → ∥T̃∥e. Let Mn be a subspace spanned by xn and yn and Pn be a pro­
jection ofX ontoMn. Suppose T̃n = PnT̃Pn, then ⟨T̃ xn, xn⟩ = ⟨T̃ yn, yn⟩ are in the numerical range
of PnT̃Pn. By Toeplitz­Hausdorff Theorem, W (PnT̃Pn) is convex and so for each n we can choose
αn, βn with νn = αnxn + βnyn = 1 (where νn is a sequence in X). If η is a point on the line segment
joining r and µ then ⟨T̃ νn, νn⟩ → η and ∥νn∥l = 1. Note that |⟨xn, yn⟩| ≤ θ < 1 for n sufficiently
large. This implies that the angle between xn and yn is bounded away from 0. Therefore, there exists
a constant M such that |αn| ≤ M and |βn| ≤ M for n sufficiently large, where ∥αnxn + βnyn∥ = 1.

By Lemma 2, ∥T̃ νn∥ = ⟨T̃ ∗T̃ νn, νn⟩ = ∥νn∥2 − 2Mϵ where ϵ → 0. That is, ∥
(
T̃ ∗T̃ − I

)
xn∥ → 0

and ∥
(
T̃ ∗T̃ − I

)
yn∥ → 0 as n → ∞. Thus ∥T̃ νn∥ → 1 as n → ∞ implying that ∥T̃ νn∥ → ∥T̃∥ as

n → ∞.
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Theorem5. Let T = U |T | be any polar decomposition of an operator T ∈ B(X). Suppose that
for a point r ∈ C there exists an orthonormal sequence {xn} ∈ X such that ⟨T̃ xn, xn⟩ → r and
∥T̃ xn∥ → ∥T̃∥e. Then there exists an infinite ­ dimensional projection P such that

P (T̃ − rI)P ∈ K(X) and ∥T̃P∥e = ∥T̃∥e.

Proof. Let {xn} ∈ X be an orthonormal sequence such that ⟨T̃ xn, xn⟩ → r and ∥T̃ xn∥ → ∥T̃∥e. By
passing to a subsequence we can assume that

∞∑
n=1

|⟨(T̃ − r)xn, xn⟩|2 < ∞ (1)

Let n1 = 1. Then
∞∑
n=1

|⟨(T̃ − r)xn1 , xn⟩|2 ≤ ∥(T̃ − r)xn1∥2 and

∞∑
n=1

|⟨(T̃ − r)xn, xn1⟩|2 ≤ ∥(T̃ − r)∗xn1∥2. Thus, by Bessel’s inequality, there is an integer n2 > n1

such that
∞∑

n=n2

|⟨(T̃ − r)xn1 , xn⟩|2 < 2−1 and
∞∑

n=n2

|⟨(T̃ − r)xn, xn1⟩|2 < 2−1. If this procedure is

repeated, a strictly increasing sequence {nt}∞t=1 of positive integers is obtained such that we have

∞∑
n=nt+1

|⟨(T̃ − r)xnt , xn⟩|2 < 2−t

and
∞∑

n=nt+1

|⟨(T̃ − r)xn, xnt⟩|2 < 2−t (2)

(1) and (2) both imply that
∞∑

t,l=1

|⟨(T̃ − r)xt, xnl
⟩|2 < ∞ (3)

If P is an orthogonal projection onto the subspaceM spanned by xn1 , xn2 , ..., then

∞∑
t,l=1

|⟨(PT̃P − rP )xnt , xnl
⟩|2 =

∞∑
t,l=1

|⟨(T̃ − r)xnt , xnl
⟩|2 < ∞ by (3),

hence PTP is a Hilbert ­ Schmidt operator and therefore PT̃P − rP ∈ K(X).

Remark 6. We remark the following:

(i) An equivalent definition of MaxWe(T̃ ) can be formulated when the orthonormal sequences are
replaced by the weakly convergent sequence {xn} as shown in the theorem below.

(ii) MaxWe(T̃ ) =MaxWe(T̃ +K) ifK is a compact operator.

Theorem7. Let T = U |T | be any polar decomposition of an operator T ∈ B(X). Suppose that for
a point r ∈ C there exists a sequence {xn} ∈ X of vectors converging weakly to 0 ∈ X such that

⟨T̃ xn, xn⟩ → r and ∥T̃ xn∥ → ∥T̃∥e. Then r ∈MaxWe(T̃ ).
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Proof. Suppose that for a point r ∈ C there is a sequence {xn} ∈ X such that ⟨T̃ xn, xn⟩ → r and
∥T̃ xn∥ → ∥T̃∥e. Since every sequence {xn} → 0 weakly, and ∥xn∥ = 1, we have r →MaxWe(T̃ ).

Theorem8. Suppose T = U |T | is any polar decomposition of an operator T ∈ B(X) and
T̃ = |T | 12U |T | 12 . Then r ∈MaxWe(T̃ ) if there exists an infinite­dimensional projection P such that
P (T̃ − rI)P ∈ K(X) and ∥T̃P∥e = ∥T̃∥e.

Proof. Let P ∈ B(X) be an infinite dimensional projection such that PT̃P ∈ K(X) and
∥T̃P∥e = ∥T̃∥e. Then there is an orthonormal sequence {xn} ∈ X such that Pxn = xn∀n and
∥T̃Pxn∥ → ∥T̃P∥e. Since ∥T̃P∥e = ∥T̃∥e we get ∥T̃ xn∥e → ∥T̃∥e. LetK ∈ K(X). Since
PT̃P = K + rP implies ⟨(PT̃P − rP )xn, xn⟩ = ⟨Kxn, xn⟩ then ⟨T̃ xn, xn⟩ = r + ⟨Kxn, xn⟩ .
From the orthonormality of sequence {xn}, we get Kxn converging weakly to 0 in norm as n → ∞.

Therefore, ⟨T̃ xn, xn⟩ −→ r as n → ∞ implying r ∈MaxWe(T̃ ).

The above results relating to the essential maximal numerical range of Aluthge transform can be
summed up as shown below.

Corollary 9. Let T = U |T | be any polar decomposition of an operator T ∈ B(X). Each of the
following conditions is necessary and sufficient in order that r ∈MaxWe(T̃ ).

(i) ⟨T̃ xn, xn⟩ → r and ∥T̃ xn∥ → ∥T̃∥e for some orthonormal sequence {xn}.

(ii) ⟨T̃ xn, xn⟩ → r and ∥T̃ xn∥ → ∥T̃∥e for some sequence {xn} ∈ X of vectors converging weakly
to 0 ∈ X.

(iii) P (T̃ − rI)P ∈ K(X) and ∥T̃P∥e = ∥T̃∥e for an infinite ­ dimensional projection P.

We end this section by examining the relationship between MaxWe(T ) and MaxWe(T̃ ) using the
following theorem.

Theorem10. Let T ∈ B(X) and T̃ = |T | 12U |T | 12 . Then MaxWe(T̃ ) ⊆MaxWe(T ).

Proof. Assume, without loss of generality that ∥T̃∥ = ∥T∥ = 1 and let r ∈ MaxWe(T̃ ). Then, there
exists a sequence {xn} ∈ X of unit vectors converging weakly to 0 ∈ X such that

⟨T̃ xn, xn⟩ → r and ∥T̃ xn∥ → ∥T̃∥e.

Then, ∥|T |1/2xn∥ = ∥|T |1/2∥ = 1 as n → ∞ and ∥(1− |T |)xn∥ = 0 as n → ∞.
Also, ∥(1− |T |3)xn∥ = 0 as n → ∞. Thus, lim

n→∞
∥T |T |1/2xn∥ = lim

n→∞
⟨|T |3xn, xn⟩ = 1 = ∥T∥. And,

lim
n→∞

|⟨T̃ xn, xn⟩ − ⟨T
√
|T |xn,

√
|T |xn⟩| = lim

n→∞
|⟨U

√
|T |xn,

√
|T |xn⟩ − ⟨T

√
|T |xn,

√
|T |xn⟩|

= lim
n→∞

|⟨(U |T |1/2 − U |T ||T |1/2)xn, |T |1/2xn⟩|

= lim
n→∞

|⟨(U |T |1/2)(1− |T |)xn, |T |1/2xn⟩|

≤ lim
n→∞

∥U |T |1/2∥∥(1− |T |)xn∥∥|T |1/2xn∥

= 0.

If we let zn = (|T |1/2xn)/(∥|T |1/2xn∥) then {zn} ∈ X is a sequence of unit vectors converging
weakly to 0 ∈ X such that ⟨Tzn, zn⟩ → r and ∥Tzn∥ → ∥T∥e. Thus r ∈MaxWe(T ).
Hence MaxWe(T̃ ) ⊆MaxWe(T ).
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Conclusion

This paper established some of the properties of the essential maximal numerical range of Aluthge
transform T̃ . Among other results, the study proved that the essential maximal numerical range of
Aluthge transform T̃ is contained in the essential maximal numerical range of the operator T .
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[5] M. Chō and K. Tanahashi, Spectral Relations For Aluthge Transform, Scientiae Mathematicae
Japonicae Online., 5 (2001), 113­119.

[6] G. Ji, N. Liu, Z.Li, Essential numerical range and maximal numerical range of the Aluthge trans­
form, Linear and Multilinear Algebra, 55 (2007), 315­322.

International Journal of Pure Mathematical Sciences Vol. 20 5


