
International Mathematical Forum, Vol. 13, 2018, no. 9, 427 - 435  

HIKARI Ltd,  www.m-hikari.com  

https://doi.org/10.12988/imf.2018.8842 

 

 

On the Existence of Almost Affinely Flat Structure  

 

Induced by Hypersurface Immersion on 

 

Connected Compact Manifold 
 

 

Mèmègnon Romuald Tagnon1 

 

Pan African University 

Institute for Basic Sciences, Technology and Innovation, Kenya 

 

Cyriaque Atindogbe 

 

Université d’Abomey-Calavi, 

Institut de Mathématiques et de Sciences Physiques (IMSP), Bénin 

 

Augustus Wali 

 

Department of Mathematics and Actuarial Science 

South Eastern Kenya University, Kenya 

 
   Copyright © 2018 Mèmègnon Romuald Tagnon, Cyriaque Atindogbe and Augustus Wali. This 

article is distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Abstract 

 

Given a hypersurface immersion and a transversal vector field, the formula of Gauss 

leads to an induced connection and a symmetric bilinear function called affine 

fundamental form. We define the norm of tensor field using the affine fundamental 

form (assumed to be nondegenerate) and prove that a hypersurface immersion on a 

connected compact 𝑛-dimensional differential manifold 𝑀 into the affine space 

ℝ𝑛+1 induces an almost affinely flat structure on 𝑀. 
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1. Introduction 
 

In [7] and [12], almost flat manifolds (in the sense of Gromov) are classified. 

This is a subject which has been on much scrutiny in differential geometry ([3], [4], 

[10] and references therein). This concept has been generalized to affine differential 

geometry and it is proved in [1] that the three-dimensional sphere is almost affinely 

flat. In general, a manifold which is almost flat is necessarily almost affinely flat, 

but the converse is not true. So far, there is no classification of almost affinely flat 

manifolds. Nevertheless, the Pontryagin number serve as the obstruction to the 

existence of almost affinely flat connections on manifolds of the form 𝑀4𝑛. 

On the other hand, the Geometry of Affine Immersion studies the nature of 

geometrical "objects" induced by an affine immersion. Suppose a differential 

manifold 𝑀, not provided with any particular affine connection, is immersed into a 

differential manifold 𝑀̃ equiped with an affine connection ∇̃ and choose any 

transversal vector field. Then intuitively the immersion transfers affinely some 

characteristics from 𝑀̃ into 𝑀. 

With the theory of affine differential geometry developed in [11], it is well 

known that if we consider an immersion and we take any transversal vector field, 

there is the decomposition of Gauss which gives a torsion-free induced connection 

and a symmetric bilinear function, namely ℎ, called the affine fundamental form. 

Recently [6], [8] and [9] studied the case where 𝑀̃ is a complex space form and 

obtained various results such as the characterizations of (connected) Hopf 

hypersurfaces. Immersions into affine space was studied in [13] and as results, there 

is no ovaloid (See Definition 7.2 of Chapter III in [11]) with vanishing unimodular 

mean curvature. In 2017, [5] studied the differential geometry of immersed surfaces 

in three-dimensional normed space and proved that under additional hypothesis, a 

connected compact surface without boundary whose Minkowski Gaussian 

curvature is constant must be Minkowski sphere. Now, in the case where 𝑀̃ is the 

affine space ℝ𝑛+1 and ∇̃ is the usual flat affine connection 𝐷, we aim to investigate 

whether there is a transversal vector field such that the induced connection ∇ on the 

connected compact manifold 𝑀 is almost affinely flat. 

 

2. Preliminaries 
 

In this section, we denote 𝑀 – the 𝑛-dimensional differential manifold (𝑛 ≥ 2), 

𝑇𝑥(𝑀) –  Tangent space at 𝑥 ∈ 𝑀, ∇ – affine connection on 𝑀 and 𝐷 – usual flat 

affine connection on the affine space ℝ𝑛+1. We assume that all vector fields as well 

as the manifolds are smooth. 

 

Definition 2.1. The torsion of ∇ is a tensor field of type (1,2) 

T ∶  𝑇(𝑀) × 𝑇(𝑀) ⟶ 𝑇(𝑀)                                                          
                               (𝑋, 𝑌)  ⟼  𝑇(𝑋, 𝑌) = ∇𝑋𝑌 − ∇𝑌𝑋 − [𝑋, 𝑌] 

where [ , ] is the Lie algebra bracket. 

The affine connection is called torsion-free or symmetric if T = 0. 
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Definition 2.2. The curvature of ∇ is a tensor field of type (1,3) 

𝑅 ∶  𝑇(𝑀) × 𝑇(𝑀) × 𝑇(𝑀) ⟶ 𝑇(𝑀)                                     
                    (𝑋, 𝑌, 𝑍)  ⟼  𝑅(𝑋, 𝑌)𝑍 = ∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 − ∇[𝑋,𝑌]𝑍 

Note: In local coordinates on 𝑇𝑥(𝑀), the components 𝑅𝑗𝑘𝑙
𝑖  of 𝑅 are given by 

𝑅(𝜕𝑘, 𝜕𝑙)𝜕𝑗 = ∑ 𝑅𝑗𝑘𝑙
𝑖 𝜕𝑖

𝑖

 

A connection is said to be flat if both the torsion tensor and the curvature tensor 

identically vanish. 

 

Definition 2.3. A nondegenerate metric (also called pseudo-Riemannian metric) is 

a tensor field of type (0,2), 𝑔 ∶  𝑇(𝑀) × 𝑇(𝑀) ⟶ ℝ satisfying the following 

conditions : 

𝑖)   𝑔(𝑋, 𝑌) = 𝑔(𝑌, 𝑋) ; (Symmetry) 

𝑖𝑖)  𝑔(𝑋, 𝑌) = 0 , ∀ 𝑌 ∈ 𝑇𝑥(𝑀) ⟹ 𝑋 = 0 (Nondegeneracy). 

 

Definition 2.4. A Riemannian metric is a tensor field of type (0,2), 𝑔 ∶  𝑇(𝑀) ×
𝑇(𝑀) ⟶ ℝ satisfying the following conditions : 

𝑎)  𝑔(𝑋, 𝑌) = 𝑔(𝑌, 𝑋) ; (Symmetry) 

𝑏)  ∀ 𝑋 ≠ 0, 𝑔(𝑋, 𝑋) > 0 (Positive-definite). 

 

Remark 2.1. It is easy to prove that the condition 𝑏) in Definition 2.4 implies the 

condition 𝑖𝑖) in Definition 2.3. In other words, a Riemannian metric is a symmetric 

(nondegenerate) positive-definite tensor field of type (0,2) on 𝑀. 

 

Definition 2.5. Let 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ 𝑀 and denote 𝜕𝑖 =
𝜕

𝜕𝑥𝑖 (𝑖 = 1, … , 𝑛) as local 

coordinate system on 𝑇𝑥(𝑀). If a nondegenerate metric ℎ satisfies ℎ(𝜕𝑖, 𝜕𝑗) =

𝜖𝑖𝛿𝑖𝑗 ; 𝜖𝑖 = ±1 where 𝛿𝑖𝑗 is the Kronecker delta, we say that {𝜕1, … , 𝜕𝑛} is an 

orthonormal basis of 𝑇𝑥(𝑀) relative to ℎ. We also say that {𝜕1, … , 𝜕𝑛} is an ℎ-

orthonormal basis of 𝑇𝑥(𝑀). 

 

Lemma 2.1. 

Let ℎ be a nondegenerate metric and 𝜙 any positive function. Consider ℎ =
1

𝜙
ℎ. 

Then  

(a) ℎ is a nondegenerate metric ; 

(b) ℬ = {𝜕1, … , 𝜕𝑛} is an ℎ-orthonormal basis of 𝑇𝑥(𝑀) if and only if ℬ =

{√𝜙𝜕1, … , √𝜙𝜕𝑛} is an ℎ-orthonormal basis of 𝑇𝑥(𝑀). 

(c) ℎ and ℎ have the same signature with respect to ℬ and ℬ respectively. 

In particular, if ℎ is positive-definite with respect to ℬ then ℎ is positive-

definite with respect to ℬ, and the converse is also true. 

Proof : 

(a) The proof uses the condition that ℎ is nondegenerate. 
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(b) & (c) For any 𝑖, 𝑗 = 1, … , 𝑛 

ℎ(𝜕𝑖 , 𝜕𝑗) = 𝜖𝑖𝛿𝑖𝑗 ⟺  𝜙ℎ(𝜕𝑖, 𝜕𝑗) = 𝜖𝑖𝛿𝑖𝑗                                           

⟺  (√𝜙)
2

ℎ(𝜕𝑖, 𝜕𝑗) = 𝜖𝑖𝛿𝑖𝑗 

                  ⟺  ℎ(√𝜙𝜕𝑖, √𝜙𝜕𝑗) = 𝜖𝑖𝛿𝑖𝑗              ∎ 

 

Proposition 2.1. For a hypersurface immersion 𝑓 ∶   𝑀 ⟶   (ℝ𝑛+1, 𝐷), suppose 

we have a transversal vector field 𝜉 on 𝑀. Then there is a torsion-free induced 

connection ∇ satisfying the formula of Gauss : 

𝐷𝑋𝑓∗(𝑌) = 𝑓∗(∇𝑋𝑌) + ℎ(𝑋, 𝑌)𝜉 

where ℎ is a symmetric bilinear function on the tangent space 𝑇𝑥(𝑀).  

If that equation holds, then 𝑓 ∶   (𝑀, ∇)  ⟶   (ℝ𝑛+1, 𝐷) is called an affine 

immersion. 

 

Note: We shall assume in this paper that ℎ is nondegenerate and can be treated as a 

pseudo-Riemannian metric. We also say that 𝑓 is a nondegenerate hypersurface 

immersion and 𝑀 is a nondegenerate hypersurface. 

In addition we have the following decomposition 

𝐷𝑋𝜉 = −𝑓∗(𝑆𝑋) + 𝜏(𝑋)𝜉 
called the formula of Weingarten. 

The (1,1)-tensor 𝑆 is called the (affine) shape operator and the 1-form 𝜏 is called 

the transversal connection form. 

 

Remark 2.1. In the case of a connected compact nondegenerate hypersurface 𝑀, 

there exists a transversal vector field such that the affine metric ℎ is positive-definite 

at every point of 𝑀. (See Proposition 7.3 of Chapter III in [11]). 

The next theorem gives the relationship between the curvature 𝑅 of the induced 

connection, the affine fundamental form ℎ and the shape operator 𝑆. 

 

Theorem 2.1. 

For an arbitrary transversal vector field 𝜉 the induced connection ∇, the affine 

fundamental form ℎ and the shape operator 𝑆 satisfy the following equation: 

𝑅(𝑋, 𝑌)𝑍 = ℎ(𝑌, 𝑍)𝑆𝑋 − ℎ(𝑋, 𝑍)𝑆𝑌 
Proof : (See [11], page 33) 

 

From the equation in Theorem 2.1 above, under the hypothesis that the affine 

fundamental form ℎ is nondegenerate, we also state the following: 

 

Theorem 2.2. 

The shape operator 𝑆 and the curvature 𝑅 of the induced connection satisfy: 

𝑆 = 0   if and only if   𝑅 = 0 

Proof : 

Obviously 𝑆 = 0 implies 𝑅 = 0 by the Theorem 2.1. Assume that 𝑅 = 0 and Let 
{𝜕1, … , 𝜕𝑛} be an ℎ-orthonormal basis. For any 𝑖 = 1, … , 𝑛, take 𝑘 ≠ 𝑖. From the  
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assumption 𝑅 = 0, we get 

𝑅(𝜕𝑖 , 𝜕𝑘)𝜕𝑘 = 0 

Again, using the Theorem 2.1, we obtain 

ℎ(𝜕𝑘, 𝜕𝑘)𝑆𝜕𝑖 − ℎ(𝜕𝑖, 𝜕𝑘)𝑆𝜕𝑘 = 0                      
⟹               𝜖𝑘𝑆𝜕𝑖 = 0 

⟹          ∑ 𝑆𝑖
𝑗
𝜕𝑗

𝑗

= 0 

⟹                     𝑆𝑖
𝑗

= 0 

So that all the components of 𝑆 are equal to 0.  ∎ 

Next we consider a change of a transversal vector field for a given immersion 𝑓. 

 

Theorem 2.3. 

Suppose we change a transversal vector field 𝜉 to 

𝜉 = 𝜙𝜉 + 𝑓∗(𝑍) 

where 𝑍 is a tangent vector field on 𝑀, and 𝜙 is nonvanishing function. Then the 

affine fundamental form changes to : 

ℎ =
1

𝜙
ℎ 

and the shape operator changes as follow : 

𝑆 = 𝜙𝑆 − ∇.𝑍 + 𝜏( . )𝑍 

In the particular case where 𝑍 = 0, this can be written as 𝑆 = 𝜙𝑆. 

Proof : (See [11], page 36) 

 

Corollary 2.1. Suppose that there is a transversal vector field 𝜉 such that the affine 

fundamental form ℎ is definite. Then there exists a transversal vector field 𝜉 such 

that the affine fundamental form ℎ̃ is positive-definite. 

Proof : 

If ℎ is positive-definite, then 𝜉 = 𝜉. 

If ℎ is negative-definite, then we take 𝜉 = −𝜉 and we obtain that the affine 

fundamental relative to 𝜉 is given by ℎ̃ = −ℎ which is positive-definite. 

 

3. Main results 

 

We recall the definition of almost affinely flat manifold stated in [1]. 

 

Definition 3.1. A Riemannian manifold (𝑀, 𝑔) is called almost affinely flat if for 

any positive real number 𝜀, there exists a torsion-free connection ∇ such that the 

norm of the curvature of ∇ satisfies ‖𝑅‖ < 𝜀 at every point of 𝑀, where the norm 
‖𝑅‖ is determined by the metric 𝑔. 

(Explicitly, ‖𝑅‖2 =
1

2
∑ (𝑅𝑘𝑖𝑗

𝑙 )
2

𝑖𝑗𝑘𝑙 , where 𝑅(𝑋𝑖 , 𝑋𝑗)𝑋𝑘 = ∑ 𝑅𝑘𝑖𝑗
𝑙 𝑋𝑙𝑙  and 

{𝑋1, … , 𝑋𝑛} is an 𝑔-orthonormal basis of 𝑇𝑥𝑀.) 
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Remark 3.1. On a compact manifold, the notion does not depend on the metric, 

because the norms of tensor fields with respect to different metrics are within 

constants of each other [1]. 

In our case, a priori the manifold 𝑀 is not provided with any metric. 

Meanwhile 𝑀 is connected compact nondegenerate hypersurface and we shall use 

the affine fundamental form ℎ considered as a positive-definite metric. 

 

Now, our main result on connected compact manifold is stated as follows. 

 

Theorem 3.1. 

Given a nondegenerate hypersurface immersion 𝑓 ∶   𝑀 ⟶   (ℝ𝑛+1, 𝐷) on a 

connected compact manifold, then for any positive real number 𝜀 there is a 

transversal vector field 𝜉 = 𝜉(𝜀) such that (𝑀, ∇) is almost affinely flat, where ∇ is 

the affine connection induced by 𝑓 and 𝜉. 

Proof : 

Let 𝜉 be a transversal vector field such that the affine fundamental form ℎ is 

positive-definite. We already know that the induced connection is torsion-free 

(Proposition 2.1). Next, recall from Theorem 2.1 that  

𝑅(𝑋, 𝑌)𝑍 = ℎ(𝑌, 𝑍)𝑆𝑋 − ℎ(𝑋, 𝑍)𝑆𝑌 

where 𝑅 is the curvature tensor of ∇. 

In local coordinate system, 𝑅(𝜕𝑖  , 𝜕𝑗)𝜕𝑘 = ℎ(𝜕𝑗 , 𝜕𝑘)𝑆𝜕𝑖 − ℎ(𝜕𝑖, 𝜕𝑘)𝑆𝜕𝑗. 

If ℬ = {𝜕1, … , 𝜕𝑛} is an orthonormal basis of 𝑇𝑥(𝑀) relative to ℎ then the 

components of 𝑅 are either 0 or 𝑆𝑖
𝑗
, where 𝑆𝑖

𝑗
 are the components of the shape 

operator 𝑆 (that is 𝑆𝜕𝑖 = ∑ 𝑆𝑖
𝑗
𝜕𝑗𝑗 ).  

 

For example: 

𝑅(𝜕𝑖 , 𝜕𝑖)𝜕𝑘 = ℎ(𝜕𝑖, 𝜕𝑘)𝑆𝜕𝑖 − ℎ(𝜕𝑖, 𝜕𝑘)𝑆𝜕𝑖 = 0 ; which leads to 𝑅𝑗𝑘𝑘
𝑖 = 0, for all 

𝑖, 𝑗, 𝑘. 

Also 𝑅(𝜕𝑖 , 𝜕𝑗)𝜕𝑖 = ℎ(𝜕𝑗 , 𝜕𝑖)𝑆𝜕𝑖 − ℎ(𝜕𝑖, 𝜕𝑖)𝑆𝜕𝑗 = −𝑆𝜕𝑗  ; for all 𝑖 ≠ 𝑗, from which 

we get 𝑅𝑖𝑖𝑗
𝑘 = −𝑆𝑗

𝑘 for all 𝑖 ≠ 𝑗. 

Therefore the square norm of 𝑅 is the half of a combination of the square of the 

components of the shape operator 𝑆 with coefficients equal to 1. Also the number 

of terms in that combination is less than 𝑛4. Indeed, the curvature tensor has 𝑛4 

components and from the computations above, some of these components are equal 

to 0. 

Now, we are in a position to prove the Theorem 3.1. 

If the shape operator 𝑆 = 0 then there is nothing to prove (Theorem 2.2).  

Otherwise, let 𝑐 = max
𝑖,𝑗

{(𝑆𝑖
𝑗
)

2
} and consider the change 𝜉 = 𝜙𝜉 with 𝜙 =

𝜀

𝑛2
√

2

𝑐
.  

(Notation: The objects ℎ, 𝑆 and 𝑅 for 𝜉 will be denoted by ℎ, 𝑆 and 𝑅.)  

This change of transversal vector field gives ℎ =
1

𝜙
ℎ (Theorem 2.3).  
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From Lemma 2.1, we obtain that ℬ = {√𝜙𝜕1, … , √𝜙𝜕𝑛} is an orthonormal basis 

relative to ℎ. Furthermore ℎ is also positive-definite (Riemannian metric). 

However such change of the basis does not affect the components of the shape 

operator 𝑆. Indeed, the components 𝑆̃𝑖
𝑗
 of 𝑆 relative to the basis ℬ are given by 

𝑆𝜕𝑖 = ∑ 𝑆̃𝑖
𝑗
𝜕𝑗

𝑗

 

where 𝜕𝑖 = √𝜙𝜕𝑖. 

But using the linearity of 𝑆, we get the following : 

𝑆(√𝜙𝜕𝑖) = √𝜙𝑆𝜕𝑖                             

= √𝜙 ∑ 𝑆𝑖
𝑗
𝜕𝑗

𝑗

 

= ∑ 𝑆𝑖
𝑗
√𝜙𝜕𝑗

𝑗

 

Thus 𝑆̃𝑖
𝑗

= 𝑆𝑖
𝑗
. 

Again from Theorem 2.3, we know that 𝑆 = 𝜙𝑆 (because 𝑍 = 0). Thus the 

components of 𝑆 relative to the basis ℬ are given by  

𝑆𝑖

𝑗
= 𝜙𝑆̃𝑖

𝑗
= 𝜙𝑆𝑖

𝑗
 

which implies that  

(𝑆𝑖

𝑗
)

2

= 𝜙2(𝑆𝑖
𝑗
)

2
=

2𝜀2

𝑛4𝑐
(𝑆𝑖

𝑗
)

2
≤

2𝜀2

𝑛4
 

Therefore ‖𝑅‖
2

< 𝜀2. ∎ 

The Theorem 3.2 below is a generalization of the Theorem 3.1. We consider the 

general case in which 𝑀 is not necessarily nondegenerate compact connected. 

  

Theorem 3.2. 

Let 𝑓 ∶   𝑀 ⟶   (ℝ𝑛+1, 𝐷) be a hypersurface immersion. Suppose that there exists 

a transversal vector 𝜉 such that the affine fundamental form ℎ, is definite. Then 

there exists a transversal vector field 𝜉′ such that (𝑀, ∇′) is almost affinely flat, 

where ∇′ is the affine connection induced by 𝑓 and 𝜉′. 
Proof : 

From Corollary 2.1, there exists a transversal vector field such that the affine 

fundamental form is positive-definite. The remaining part of the proof follows 

easily. 

 

4. Conclusion and Suggestions 
 

In this paper, we obtained that under the hypothesis of nondegenerescence, 

a compact connected hypersurface is almost affinely flat. This result has been 

generalized to any arbitrary smooth manifold for which there exists a definite affine 

fundamental form.  



434                                                                        Mèmègnon Romuald Tagnon et al. 

 

 

The general definition of almost affinely 𝑘-flat needs the curvature tensor 𝑅 

to satisfy ‖∇𝑖𝑅‖ < 𝜀, for 𝑖 = 0, 1, … , 𝑘 with the convention ∇0𝑅 ≡ 𝑅 (See [2]). 

This paper deals with almost affinely 0-flat. However, we do not know whether 

there is a transversal vector field such that the induced connection is almost affinely 

𝑘-flat for 𝑘 ≥ 1. Also, it is interesting to determine the existence or non-existence 

of equiaffine transversal field which leads to an almost affinely flat connection. 

Again, it is proved in Proposition 7.3 of Chapter III in [11] that there is a global 

Blaschke normal field provided on compact connected hypersurface 𝑀 such that 

the affine metric is positive-definite. But it is an open problem to investigate the 

existence of a Blaschke normal field inducing an almost affinely flat structure on 

𝑀. 
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