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Current trends in global honeybee population changes have been linked to drastic declines
in honeybee populations caused by complex interactions between pathogens, arthropod
pests such as Varroa, pesticides, honeybee stress and habitat loss. Although substantial
information exists for this sudden decline in honeybee populations in Europe and North
America, in Africa the effect of this threat continues to draw debate. Despite recent reports
showing the presence of V. destructor mites across the continent, knowledge on pathogens
associated with bees and this mite in various parts of the continent is scanty. This review
provides a comprehensive update on the documented diversity and geographic distribution
of honeybee pathogens and points to the need of further information on these constraints of
honeybee health.

Key words: pathogens, Nosema, chalkbrood, stonebrood, Apis mellifera, viruses, Varroa, Africa.

INTRODUCTION

Through pollination of cultivated and wild
flowering crops, honeybees, Apis mellifera L.,
provide essential ecosystem services (Kremen et
al. 2007) that ensure sustained food production,
ecosystem stability and opportunities for income
generation and habitat conservation for rural
poor communities through sale of bee products
such as honey, pollen, propolis and wax (Sande
et al. 2009; Raina et al. 2011). The value of pollina-
tion to food production is estimated at C153 billion
globally and C11.9 billion in Africa (Gallai et al.
2009). These values are based on the services ren-
dered by managed honeybee colonies (responsi-
ble for 80–85 % of pollination in commercial farm
plots), and as a result, underestimates the real
value of honeybees (Allsopp et al. 2008).

The unexplained sudden loss of adult worker
bees in managed honeybee colonies in the United
States of America(Oldroyd 2007; van Engelsdorp
et al. 2009; Evans & Schwarz 2011) and some Euro-
pean countries (Dainat et al. 2012b) was first
described as ‘Colony Collapse Disorder’ (CCD),
but currently referred to as ‘decline in honeybee
populations’. This syndrome is unique in that the
dead adult bees cannot be found in the vicinity of
the hives, implying that the bees go missing and

food resources left by the missing worker bees
remain intact without attacks from robbing bees or
pests (Cox-Foster et al. 2007; Oldroyd 2007; van
Engelsdorp et al. 2009). CCD and the decline in
honeybee populations have received global atten-
tion, primarily because of the solid link between
pollination and food security. Intensive use of
pesticides and fungicides in agriculture (Frazier
et al. 2008; Mullin et al. 2010), forest destruction and
fragmentation, pests (mites, beetles, moths, birds,
frogs, bears) and pathogens (fungi, bacteria, viruses
and protozoans) are well known to negatively
affect the health of honeybees (Genersch et al.
2010). An interaction of these factors has been
suggested to cause CCD and the decline in honey-
bee populations (Oldroyd 2007).

Africa is home to a great diversity of honeybee
races (Kajobe & Roubik 2006; Moritz et al. 2007; De
la Rúa et al. 2009; Dietemann et al. 2009) and
together with the continent of Asia, it has been
considered a potential region of origin of Apis
mellifera (Whitfield et al. 2006; Han et al. 2012). A
review by Dietemann et al. (2009) showed that
Africa was free of sudden honeybee losses, which
warrants stringent preventive conservation
measures to avert the losses experienced in other
parts of the world. However, despite discussing
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principal biotic and abiotic threats to honeybee
colonies on the continent and suggesting ways to
ensure their conservation, the review did not
delve into the finer details on the exact nature of
these threats and their geographic occurrence
across the continent and made no mention of
pesticides and fungicides as potential threats,
contrary to the fact that pesticide use is well docu-
mented in tree and vegetable cropping systems in
Africa (Crawford et al. 2003; Gunnell & Eddleston
2003; Fatoki & Awofolu 2004; Williamson et al.
2008). Although presumed free of sudden honey-
bee losses, pests and diseases associated with this
disorder have been reported on the continent over
the last three decades (Hussein 2000; Frazier et al.
2010; Kajobe et al. 2010; Strauss et al. 2013), suggest-
ing that a closer examination of the possible exis-
tence of CCD in Africa is warranted. Despite
claims of a decline in honeybee populations on the
continent (Neumann & Carreck 2010; Kluser et al.
2011), these changes appear inconspicuous com-
pared to those in Europe and North America
(Neumann & Carreck 2010). This scenario has been
attributed to greater resilience of African honey-
bees towards pests and diseases compared to their
European counterparts (Tarpy 2003) and paucity
of information through insufficient surveys
(Dietemann et al. 2009). The observation of colony
decimation and death due to Varroa mites and
diseases on the island of Madagascar (OIE 2010;
Rasolofoarivao et al. 2013) points to the probable
existence of isolated and undocumented cases of
CCD on the continent. More so, presence of Varroa
has been confirmed in many countries in Africa
(Dietemann et al. 2009; Frazier et al. 2010;
Rasolofoarivao et al. 2013), clearly suggestive that
the health status of the continent’s main pollina-
tion resource is under threat and therefore urgent
and extensive health surveys are needed.

This review provides an update on the diversity,
distribution and management of honeybee diseases
in Africa. It is anticipated that this paper will spur
increased interest in African honeybee research
and engender future efforts to increase knowl-
edge of threats and potential mitigation tools and
strategies.

HONEYBEE DISEASES

Like most living organisms, honeybees are
afflicted by a myriad of diseases whose causative
agents could be bacterial, viral or fungal in origin

(Genersch et al. 2010). Factors such as the eusocial
life of honeybees, abundant stores of resources
such as pollen and the haplodiploidy nature
of honeybees seem to make honeybees more
susceptible to colony-wide destruction in the case
of a disease epidemic (Schmid-Hempel 1998).
However, other aspects of this super-organism’s
way of life, including its grooming, hygienic
(Spivak & Reuter 2001), and absconding behav-
iours (Fries & Raina 2003) have been reported to
enable it to avoid complete decimation in the case
of a disease or pest outbreak. In addition to group
defence mechanisms, honeybees possess individ-
ual immune responses in the form of cellular and
humoral immune responses (encoded by genes
belonging to at least 17 gene families involved in
insect immunity) which ensure maintenance of
their health status (Evans et al. 2006; Weinstock
et al. 2006). Despite the existence of both colony
and individual levels of immunity, honeybees
around the world remain plagued by diseases and
pests that threaten to destroy this super-resource.

Diseases caused by viruses
There are approximately 18 viruses known to

affect honeybees (Allen & Ball 1996) at different
stages of their life cycle (Chen & Siede 2007). The
viruses mostly belong to the taxonomic order
Picornavirales which contains five families, two of
which (Iflaviridae and Dicistroviridae) contain
common honeybee viruses (ICTV 2013).

Virus infections could occur as single, double or
multiple infections (Chen et al. 2004; Chen et al.
2005a) or in combination with other known patho-
gens (Bailey et al. 1983). In addition, they can be
maintained in the body of the honeybee for long
periods of time, sometimes resulting in undetect-
able, acute or chronic infections. Acute and chronic
infections elicit dramatic changes in the insect,
such as shrivelled wings, loss of hair, ‘shivering’
and even paralysis (Bailey et al. 1963; Bailey &
Gibbs 1964). Among the 18 viruses, seven have
been implicated as major contributors in the
decrease of honeybee populations globally (Cox-
Foster et al. 2007; Dainat et al. 2012b).

Five honeybee viruses – Acute Bee Paralysis
Virus (ABPV), Israeli Acute Paralysis Virus (IAPV),
Sac Brood Virus (SBV), Black Queen Cell Virus
(BQCV), and Deformed Wing Virus (DWV) – have
so far been identified in Africa. This assessment is
most probably an underestimation of the actual
disease prevalence due to the fact that most viral
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diseases are asymptomatic in honeybee adults and
for that reason, more accurate tools of detection of
the pathogen genome should be applied. Such
tools include RT-PCR (Grabensteiner et al. 2001;
Chen et al. 2004; Yue & Genersch 2005; Chen et al.
2006; Yue et al. 2006), qPCR (Chen et al. 2005b;
Chantawannakul et al. 2006) and ELISA (Anderson
19840. Next Generation Sequencing (NGS) technol-
ogies have also been used in studying known
viruses and are currently being explored for virus
discovery (Mardis 2008; Barzon et al. 2011). The
inability to observe viral infections via non-genetic
methods has made their timely detection and
management virtually impossible.

Acute bee paralysis
This disease is caused by the Acute Bee Paralysis

Virus (ABPV) and affects both brood and adult
honeybees in a colony. It differs from Chronic bee
paralysis (CBP) in that bees infected with the former
show signs of ‘flightlessness’ and die more quickly
than those infected by CBPV (Bailey et al. 1963;

Bailey & Gibbs 1964). Acute bee paralysis disease is
present on all continents except Australia (de
Miranda et al. 2010). In Africa, it has been reported
in South Africa (Govan et al. 2000; Allsopp 2001)
and in Kenya (Muli et al. 2014), as shown in Fig. 1.

ABPV is an RNA virus belonging to the family
Dicistroviridae and genus Aparavirus (ICTV 2013).
It is closely related to two other bee viruses namely
IAPV and Kashmir Bee Virus (KBV), and all three
are sometimes considered to be a complex of
related viral species (Chen & Siede 2007). The virus
is spread among the honeybees via salivary gland
secretions exchanged during trophallaxic feeding
between workers, brood and the queen. Recent
studies have shown that the mite Varroa destructor
can vector APBV (Bakonyi et al. 2002; Siede et al.
2008), supposedly acting as an activator for the
virus as well. However, the mite’s role as a virus
activator has been disputed following the observa-
tion of viral replication in honeybees in the absence
of any mites (Bakonyi et al. 2002; Tentcheva et al.
2004).
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Fig. 1. Detection of honeybee viruses in Africa. Countries shaded in grey have confirmed presence of Varroa
destructor, currently described in 20 out of the 54 countries on the continent (about 37.5 % of Africa). With the
exception of Kenya, Uganda and South Africa, there is lack of an extensive investigation of viral diseases of honey-
bees. In non-shaded countries similar information is lacking and the disease status is unknown.



Israeli acute paralysis disease
This disease, which is a close relative to ABPV

and the Kashmir Bee Virus, is caused by Israeli
Acute Paralysis Virus which was first described in
2004 from dead honeybees originating from Israel
(Maori et al. 2007). In Africa detection reports have
so far been limited to South Africa (Strauss et al.
2013) (Fig. 1).

IAPV belongs to the Dicistroviridae family of
viruses (Sabath et al. 2009) and genus Aparavirus
9ICTV 2013). It is considered one of the markers of
CCD (Cox-Foster et al. 2007) with signs similar to
those caused by ABPV which includes shivering
wings that progress to paralysis and eventually
death a few days post-infection (Maori et al. 2007).
Owing to the close similarity of IAPV, ABPV and
CBPV infection syndromes, the most accurate
method of detection of IAPV is through molecular
detection of the viral genome using techniques
such as qPCR and RT-PCR (Francis & Kryger 2012).

While little is known about the transmission of
IAPV among honeybees, V. destructor has been
experimentally shown to serve as an effective
vessel for viral replication and transmission inside
the colony (Di Prisco et al. 2011). Globally, the virus
has been recorded in Australia, Israel, U.S.A.,
Spain, France (Blanchard et al. 2008) and Poland
(Pohorecka et al. 2011).

Sacbrood disease
This disease was first described in 1913 (White

1913) but it was not until 1964 that SBV, its caus-
ative agent, was described (Bailey et al. 1964). It
belongs to the Iflaviridae family which contains
one genus, Iflavirus (ICTV 2013). In Africa, the
pathogen has been identified in South Africa using
the reverse-transcription PCR (Grabensteiner et al.
2001) and in North Africa (Algeria, Egypt and
Tunisia) using field diagnostics involving observa-
tion of affected larvae (Hussein 2000) (Fig. 1).

Sacbrood disease is easily detected in the field
due to the characteristic sac-like appearance of
diseased larvae. Infected larvae do not pupate, as
the outer larval skin sags, becomes sac-like and
later accumulates fluid (White 1913).

Possible routes of transmission of this virus include
horizontal spread via vectoring by V. destructor
(Tentcheva et al. 2004) and Aethina tumida (Eyer
et al. 2008, 2009) and spread from foragers to other
colony nest mates through shared food resources
such as pollen, honey and royal jelly (Shen et al.
2005a). Vertical transmission of the virus from

infected queens to their eggs has also been docu-
mented (Chen et al. 2006). While infection may
persist in adult bees, huge populations of larvae
infected by SBV are rarely detected in colonies as
honeybee workers are very effective in detecting
and removing infected brood, through their
hygienic behavioural practices (Chen & Siede
2007).

Black queen cell disease
This disease is caused by the Black Queen Cell

Virus (BQCV), which is an RNA virus from the
Dicistroviridae family (Leat et al. 2000) and genus
Cripavirus (ICTV 2013). It has been detected in
South Africa (Allsopp 2001; Strauss et al. 2013),
Uganda (Kajobe et al. 2010) and Kenya (Muli et al.
2014) (Fig. 1).

First isolated from field-collected dead samples
of queen larvae and pre-pupae found in darkened
rearing cells, the virus mostly affects the pre-adult
stage of honeybee development with early stages
of infection similar to those of sacbrood disease.
Also, it has been detected in adult worker bees,
especially those tending the queen and in worker
pupae (Chen & Siede 2007). Infection in the adult
bees is asymptomatic and only detectable by
molecular analysis of the viral genome (Chen et al.
2004; Tentcheva et al. 2004).

Development of infection with BQCV has often
been associated with infection with Nosema apis,
under both field and laboratory conditions (Leat
et al. 2000; Tentcheva et al. 2004). A possible reason
for such co-occurrence (or symbiosis) is a micro-
sporidian-facilitated access to host gut cells.
However, the exact mechanism behind this symbi-
osis remains unclear. Transmission of the virus has
been shown to occur vertically from the queen to
her offspring or through the oral-faecal route
(Chen et al. 2006; Singh et al. 2010). In Europe, the
prevalence of BQCV is highest in spring and early
summer (Tentcheva et al. 2004).

Deformed wing disease
Deformed wing disease is caused by Deformed

Wing Virus (DWV), a pathogen first discovered in
adult honeybees sampled from colonies heavily
infested with V. destructor in Japan (Ball 1983). The
virus belongs to the order Picornavirales, family
Inflaviridae and genus Iflavirus (ICTV 2013) and is
commonly associated with the mite V. destructor
(Tentcheva et al. 2004; Tentcheva et al. 2006; Chen
& Siede 2007). In Africa, DWV has been detected in
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Algeria (Loucif-Ayad et al. 2013), Kenya (Muli et al.
2014) and Benin (Paraïso et al. 2012) (Fig. 1). It has
been named one of the predictors of CCD
(Cox-Foster et al. 2007; Dainat et al. 2012a; Francis
et al. 2013).

Symptoms of DWV infection include poorly
developed wings (deformed wings) in honeybees
infected pre-emergence, reduced size of emerging
adult, swollen and shortened abdomen, discolor-
ation and pupal/adult death (Yue & Genersch
2005; Miranda & Genersch 2010). The main route
of spread of the virus appears to be horizontal
transmission through feeding of Varroa on larval
and pupal haemolymph (Bowen-Walker et al.
1999). This virus has been shown to undergo repli-
cation (Gisder et al. 2009) and activation (Shen et al.
2005b) in the mite which also possesses the capac-
ity to transmit the virus to other honeybees
(Tentcheva et al. 2004; Martin et al. 2012; Francis
et al. 2013). Adult bees infected post-emergence are
usually asymptomatic, as are other life stages in-
fected with DWV in the absence of Varroa which is
the main vector of the virus, hence the need for
molecular diagnosis of DWV in honeybee adults
(Yue & Genersch 2005). Other routes of transmis-
sion include vertical transmission via infected
queens (Chen et al. 2006) and drones (Yue et al.
2006), and through the faecal-cannibal-oral route
and ingestion of contaminated food resources in-
cluding royal jelly and pollen (Yue & Genersch
2005).

Mycoses in honeybees
Extensive research has been done on the honey-

bee mycoflora from different castes (Gilliam et al.
1977), in healthy and sickly bees (Prest et al. 1974),
and from both managed and feral colonies
(Gilliam & Taber 1991). These studies have led to
the identification of main genera of fungi that
cause mycoses in honeybees namely Ascosphaera,
Nosema and Aspergillus. In contrast to diseases
caused by viruses, fungal diseases seem to be
greatly influenced by climatic conditions (Gilliam
et al. 1988; Martín-Hernández et al. 2007; Tapaszti
et al. 2009; Fries 2010) and are mainly introduced to
healthy colonies through consumption of contam-
inated food resources (De Jong 1976; Higes et al.
2008b). The ease of field diagnosis of most honey-
bee mycoses has led apiculturists to employ syn-
thetic chemicals such as fumagillin to control the
diseases (Williams et al. 2008; Higes et al. 2011).
Owing to the increasing risks associated with

overuse of these chemicals (Desneux et al. 2007;
Frazier et al. 2008; Wu et al. 2011; Stokstad 2012),
current management efforts are directed at im-
proving the genetic stock of the honeybee colonies
(Gilliam et al. 1983; Spivak & Gilliam 1998;
Swanson et al. 2009).

Chalkbrood disease
Chalkbrood disease is caused by the fungus

Ascosphaera apis (Maassen 1913), with the genus
Ascosphaera known to contain both saprophytic
and parasitic fungi (Spiltoir 1955). In Africa,
chalkbrood disease has been reported in Ethiopia
(Hussein 2000; Gebeya & Genet 2006), Tunisia
(Heath 1985; Hussein 2000), South Africa (Allsopp
2001; Strauss et al. 2013), Egypt (Hussein 2000;
Sanad & Mohanny 2011) and Nigeria (Ajao &
Babatunde 2013; Akinwande et al. 2013) (Fig. 2).

The fungus is morphologically heterothallic
(sexually dimorphic). The female reproductive
organ is the ascogonium which contains a recep-
tive hypha known as the trichogyne. During
sexual reproduction the trichogyne fuses with the
nutriocytes (inflated ascogonia) leading to the
formation of asci and ascospores. It is thought that
each ascus produces eight infective spores (Spiltoir
1955). In honeybees, A. apis causes a severe and
invasive mycosis fatal to the brood of all castes
(Aronstein & Murray 2010) with larvae less than
5 days old being the most susceptible (De Jong
1976).

Infection of larvae by A. apis has been well
demonstrated to occur solely through ingestion of
spores in contaminated honey or pollen (De Jong
1976; Flores et al. 2005a) obtained from foraging,
robbing or spore-contaminated foundation wax
(Koenig et al. 1986; Flores et al. 2005a; Flores et al.
2005b).

Once consumed, the spores move to the gut of
the honeybee larva where germination occurs, a
process thought to be activated by carbon dioxide
found in the larva’s gut (Heath & Gaze 1987).
Germinated spores penetrate the host body cavity,
causing death due to mechanical, enzymatic and
toxicological damage (Glinski & Buczek 2003),
leading to a hard mummified larva with a white or
black colouration (Aronstein & Murray 2010). Such
mummified larvae may contain up to 109 A. apis
ascospores (Hornitzky 2001). Infected larvae have
been reported to produce volatile compounds such
as phenylethyl acetate, 2-phenylethanol, and
benzyl alcohol which probably induce hygienic
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behaviour in the colony’s worker bees, aganist the
diseased larvae (Swanson et al. 2009; Boucias et al.
2012).

The disease is most prevalent when humidity is
high and conditions are chilly, with sudden envi-
ronmental changes in temperature and humidity
thought to play a crucial role in its development
(Flores et al. 1996). Honeybee colonies with poor
hygienic behaviour have a higher susceptibility to
chalkbrood disease (Gilliam et al. 1983; Spivak &
Gilliam 1998), with tolerance and susceptibility
shown to differ among honeybee subspecies
(Jensen et al. 2009) and with pollen and nectar flow
cycles (Flores et al. 2005a).

Stonebrood disease
Stonebrood disease was first described in honey-

bees in 1906 by Massen in Germany (Shoreit &
Bagy 1995). It is caused by a variety of fungal
pathogens, mostly of the saprophytic soil fungal
genus Aspergillus (Gilliam & Vandenberg 1997;
Vojvodic et al. 2011). In Africa, this disease has been
reported in Algeria, Egypt, Libya, Tunisia (Hussein
2000) and Nigeria (Shoreit & Bagy 1995; Hussein
2000) (Fig. 2).

Signs of stonebrood disease are similar to that
of infection with Ascosphaera apis in chalkbrood
disease, with the main difference being that the
‘mummified’ brood in chalkbrood disease are
sponge-like while that of stonebrood disease is
hard and compact (like little stones), hence its
name. Transmission of this disease is via oral and
cuticular routes (Burnside 1930), and by the para-
site V. destructor (Benoit et al. 2004). Stonebrood
disease is an opportunistic infection which often
appears alongside other honeybee stressors and
affects all life stages of the honeybee.

Nosema disease
In honeybees, Apis mellifera, Nosema disease is

caused by two pathogens of the genus Nosema
which belong to the kingdom Fungi and phylum
Microspora. This phylum consists of spore-forming
unicellular parasites whose main mode of repro-
duction is via heat-resistant spore production and
germination (Sprague et al. 1992). Examples of
microsporadian parasites that infect honeybees
are Nosema apis and Nosema ceranae, with the latter
being more virulent (Paxton et al. 2007; Martín-
Hernández et al. 2012) although this viewpoint has
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been disputed by other researchers (Forsgren &
Fries 2010). Nosema ceranae has been listed as one of
the diagnostic pathogens of colony collapse disor-
der in the U.S.A. and Europe (Cox-Foster et al.
2007; Higes et al. 2008a; Dainat et al. 2012a) and has
been identified in all colonies that collapsed due to
this disorder. In addition to differences in virulence
between the two species, N. ceranae shows less host
specificity (Plischuk et al. 2009; Chaimanee et al.
2010; Suwannapong et al. 2010) and less seasonality
than N. apis (Martín-Hernández et al. 2007; Paxton
et al. 2007; Martín-Hernández et al. 2012; Traver
et al. 2012) and has been purported to be displacing
N. apis in its colonization of A. mellifera (Fries 2010;
Martín-Hernández et al. 2012), a view disputed by
other authors (Forsgren & Fries 2013). Phylogenetic
analyses show that N. ceranae is a sister species of
N. bombi, while N. apis is a basal member of that
clade (Shafer et al. 2009).

On the African continent, N. apis has been identi-
fied in Zimbabwe (Fries et al. 2003), in South Africa
where it is reported to be widespread (Swart 2003;
Strauss et al. 2013) and Kenya (Muli et al. 2014).
Similarly, N. ceranae has been identified in Algeria
(Higes et al. 2009b) with reports of the same in
Benin (Paraïso et al. 2012). Nosema disease, not
distinguished as being caused by either N. apis
or N. ceranae, has been reported in Algeria, Egypt,
Libya, Morocco, Tunisia, Kenya, Tanzania, Ethio-
pia and Senegal (Hussein 2000) (Fig. 2).

Nosema ceranae is mostly prevalent in warmer
climates (Martín-Hernández et al. 2007; Tapaszti
et al. 2009), while N. apis is more prevalent in cooler
climates (Fries 2010). The infective stage of the
pathogen is the non-germinated spore which is
ingested in contaminated pollen or honey (Higes
et al. 2008b).

Nosema is mainly transmitted horizontally
through the oral-faecal route from workers to
queens (Higes et al. 2009a) and brood (Smith 2012).
Other non-oral-faecal routes such as transmission
of Nosema to/from queens to drones during mating
(Traver & Fell 2011) and to eggs laid (Traver & Fell
2012) have been described using molecular tech-
niques but are yet to be validated using histological
evidence.

Heavy infection by N. apis can be detected by
faecal marks of diarrhoea on the combs and the
sides of the hive (Hertig 1923). This contamination
on the hive is a main source of infection to honey-
bees as the spores contained in honeybee faecal
waste are viable and capable of maintaining their

viability for over a year (Bailey 1962). In contrast to
N. apis, N. ceranae infection has not been observed
to be associated with diarrhoea (Higes et al. 2007).

Aside from the use of infection signs for diagnosis,
more accurate diagnosis of nosemosis can be done
through light microscopy by checking for Nosema
spores in preparations of the ventricular tissue of
honeybees (Giersch et al. 2009; Nabian et al. 2011).
The use of light microscopy is limited in that
spores of both species cannot be clearly separated
from one another (Martín-Hernández et al. 2007;
Nabian et al. 2011), the most accurate method of di-
agnosis capable of delimiting both species is
molecular diagnosis (Chen et al. 2009; Forsgren &
Fries 2010). This technique is highly sensitive and
permits N. apis and N. ceranae detection from a
diverse array of organic matter including hive
bottom board scraps and frass (Copley et al. 2012).
Different synthetic chemicals have been used
against the Nosema disease, the most popular
being fumagillin (Katznelson & Jamieson 1952;
Williams et al. 2008; Higes et al. 2011).

Diseases caused by bacteria
Two of the most globally prevalent honeybee

infections caused by bacteria include American
foulbrood (AFB) and European foulbrood (EFB)
diseases caused by the bacteria Paenibacillus larvae
(Genersch et al. 2006) and Melissoccocus plutonius
(Bailey 1983), respectively. The former, AFB, is
more widespread geographically and more acute
of the two diseases. Both EFB and AFB are highly
contagious diseases and are by OIE standards,
notifiable (Lewbart 2011; OIE 2013).

European foulbrood disease
European foulbrood disease is caused by the

Gram-positive bacterium Melissococcus plutonius,
initially identified as Streptococcus pluton (Bailey
1957), then as Melissoccocus pluton in 1982 (Bailey
1983) and finally as M. plutonius (Trüper & de’Clari
1998). The disease has been reported in South
Africa (Govan et al. 1998; Davison et al. 1999), Algeria,
Libya, Morocco, Tunisia, Tanzania, Senegal and
Guinea-Bissau (Hussein 2000) (Fig. 3).

Melissococcus plutonius mostly affects larvae, espe-
cially those just about to be capped, and eventually
kills larvae when they are about four to five days
old (Forsgren et al. 2005). Characteristics of infec-
tion include larvae dying in a stretched-out
(instead of typically coiled) position, change in
colour from white to yellow then brown and even-
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tually grey, and in cases where a large proportion
of the brood in a hive are infected, a foul smell is
emitted (Forsgren 2010). The pathogen mainly
infects the gut of the honeybees, after gaining
entry through contaminated food. The actual
mechanism by which the pathogen kills the larva
remains unclear. Adults infected by European
foulbrood disease are asymptomatic and aid in the
spread of the disease from one colony to another
through foraging activities such as honey robbing.

The bacterium has been detected in larvae,
pupae and honey using conventional and quanti-
tative PCR (Forsgren et al. 2005; Forsgren et al.
2013) and new nano-particle-based techniques
(Saleh et al. 2012). Field detection is done smelling
the characteristic ‘foul’ odour, indicative of EFB
infection. In Europe and North America, EFB is
mostly experienced in spring and early summer.

Control of EFB in few European countries has
been carried out through the application of the
bacteriostatic antibiotic oxotetracycline hydro-
chloride (OTC) although use of this and other
antibiotics in the hive has been banned in most
countries around the world (Forsgren 2010).

American foulbrood disease
American foulbrood disease is caused by the

Gram-positive bacterium Paenibacillus larvae for-
mally known as Bacillus larvae (Heyndrickx et al.
1996; Genersch et al. 2006). Previously, AFB was
thought to have a worldwide distribution, except
in sub-Saharan Africa (Matheson 1996; Fries &
Raina 2003). However, more recent surveys have
shown the presence AFB in the Western Cape re-
gion of South Africa (Human et al. 2011) and
Guinea Bissau (Hussein 2000; Hansen et al. 2003).
This disease has also been identified in honey orig-
inating from Tunisia (Matheson 1993; Hussein
2000; Fries & Raina 2003; Hamdi et al. 2013), Alge-
ria, Libya and Morocco (Hussein 2000) (Fig. 3).

The bacterium almost exclusively infects honey-
bees at the larval stage, as early as 12 hours after
hatching (Genersch 2010). The infective stage of
the pathogen is the endospore, which gains entry
into the larva via the oral route and makes its way
into the gut, where it degrades the chitinous
peritrophic lining of the larva resulting in massive
infection of the underlying epithelial cells (Garcia-
Gonzalez & Genersch 2013).

480 African Entomology Vol. 22, No. 3, 2014

Fig. 3.Countries shaded in grey have confirmed presence of foulbrood disease. In non-shaded countries the status of
the disease is unknown.



The main routes of transmission are horizontal
through inter-colony robbing activities (Lindström
et al. 2008) and vertical via swarming of strong but
clinically infected colonies (Fries & Camazine
2001; Fries et al. 2006). This pathogen can be
vectored by Aethina tumida (Schäfer et al. 2010).
Recently, researchers have developed models to
simulate the spread and impact that different
control strategies could have in case of an AFB epi-
demic (Zuur et al. 2009; Datta et al. 2013), although
these models are still at the experimental stage.

The commonly used methods of control include
burning of the clinically infected honeybee colonies
and contaminated hive materials (Waite et al.
2003), shake swarm method where adult honey-
bees are shaken and let loose into a new, hygieni-
cally cleaned hive, without brood, and brood from
the old hive destroyed (Pernal et al. 2008), and
breeding of colonies with improved hygienic
behaviour towards AFB infections (Spivak &
Reuter 2001).

CONCLUSION

This survey of existing literature shows significant
knowledge gaps on the incidence, prevalence,
diversity, and geographic occurrence of honeybee
diseases in Africa, emphasizing the need for
continent-wide bee epidermiological surveys.
Although it is clear that honeybee pathogens have
so far had a much less adverse impact on African
honeybees compared to honeybees in Europe and
U.S.A., reports of declining feral colonies of bees in
some parts of Africa suggest a trend similar to other
affected regions around the world (Neumann &
Carreck 2010; Kluser et al. 2011). Despite the high
genetic diversity and numerous feral bee colonies

that Africa possesses (Kajobe & Roubik 2006;
Moritz et al. 2007; De la Rúa et al. 2009; Dietemann
et al. 2009), knowledge on bee diseases indigenous
to the African continent and the true origin of
several already described diseases is lacking. The
paucity of information concerning risk factors
associated with these diseases and pathogens im-
plies that there is still much to be done to fill these
knowledge gaps. Specifically, we need to under-
stand the diversity and epidemiology of bee
diseases and the effects that apicultural practices
unique to this continent have on feral and
managed honeybee populations in Africa. Also,
there is an urgency to understand how honeybee
pathogens and pests are spread across the conti-
nent, influenced by both anthropological (such as
trade and modern beekeeping practices), biotic
factors (such as honeybee migration and hybrid-
ization) and abiotic (such as climatic and environ-
mental) factors. While it has been noted that many
African countries have developed policies and
regulations in a bid to conserve wildlife, few coun-
tries have regulations specific to honeybee conser-
vation and fewer still understand the threats faced
by honeybees within their borders. Addressing
these issues will bring us closer to identifying the
threats to bee health on the African continent
and develop/adopt appropriate and cross-border
policies to ensure their conservation and contin-
ued resource to food, feed and the broader ecosys-
tem.
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