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Abstract  
 
This paper explores the spatial determinants of poverty among livestock keepers by taking an 
econometric approach that combine poverty indices for livestock keeping areas in Kenya as the 
dependent variable and relating this to a variety of spatial variables likely to contribute to poverty 
at a local scale. We use both global and local regression models. In carrying out this analysis, 
elimination of spatial autocorrelation was done by use of the Moran’s I and Lagrange multiplier. 
The results show different spatial variables to influence poverty at the different scales and to be 
geographically related at the local scale. Soil quality, agro-climatic conditions, slope, land use 
and demographic variables are important factors in determining poverty. These variables offer a 
challenge to policymakers in deciding on the measures to take to enable the reduction of poverty 
in the rangelands of Kenya. With the establishment of constituency development funds, tackling 
the problem at the local scale could be the most feasible option for the national government when 
such information is made available. 
 
Key words- livestock, poverty, rangelands, rural, spatial, Kenya 
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1.0 Introduction 

 
It is estimated that in the next two decades, the livestock sector will have significantly changed 

to produce about 30% of the value of global agricultural output and directly or indirectly use 

80% of the world’s agricultural land surface (World Bank 2001). This would make it the 

Worlds most important sub-sector in terms of land use. In Kenya, the livestock sector is 

dominated by small scale producers and is a very important sector for the economy since its 

products are important commodities both locally and internationally. The livestock is mainly 

concentrated in the arid and semi-arid lands (ASALs) covering over 75 percent of the country’s 

land surface (FAO, 2005). There, it accounts for 90 percent and 95 percent of employment and 

family incomes respectively  

  

Despite the growing importance of livestock in the economy, very little is known about the 

nature and determinants of poverty among livestock keepers. Within Kenya, poverty has been 

highest in the rangelands, where most livestock keepers are found (CBS, 2003). In 1999, the 

year with which we are primarily concerned, the incidence of poverty in the rangelands was 56 

percent and the Gini–coefficient, which is used to measure income inequalities, was 0.30. 

Within the rangelands, poverty is particularly severe in rural areas. Interestingly, despite their 

rural status and poverty, livestock related activities continue to generate the biggest proportion 

of their incomes.  

 

This paper aims to investigate the nature and determinants of poverty among livestock keepers 

in the rangelands of Kenya, as well as their distributional profile and poverty impact. The study 

sets out to answer the following questions. What spatial factors are dominant in influencing 

variation in poverty among livestock keepers in Kenya? Does the relationship between agro-

climatic variables and poverty differ significantly among poor livestock keepers in Kenya? In 

other words, what spatial factors are important in explaining the level of poverty in livestock 

keeping areas in Kenya?  What are the implications of changes in spatial factors and policies 

for poverty among livestock keepers in Kenya?  
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The paper proceeds as follows. Section 2 provides a brief overview of general issues about 

livestock, poverty and environmental conditions in Kenya. Section 3 discusses the data and 

presents a brief overview of the analytical methods. Section 4 assesses the impact of 

geographical conditions on poverty by estimating a global and local model. An illustrative 

simulation is done in this section. The last section concludes with policy recommendations and 

some hypotheses about the effects of changes in geographic conditions on the course of rural 

poverty in the rangelands.   

2.0  Poverty, Livestock and the Environment in Kenya 
 

Kenya ranks among the least developed countries where the poverty index shows more than 

50% of its population below the global described poverty line (World Bank 2004). Poverty is 

more pronounced among the livestock keepers (CBS and ILRI, 2003). Since independence, one 

of the principal goals of Kenya’s development effort has thus been to reduce poverty. 

Successive governments have pursued this through development strategies emphasizing 

economic growth, employment creation and provision of basic services. In the first decades 

after independence, Kenya’s development strategy was based on the idea that poverty would be 

alleviated through rapid economic growth, as the poor would benefit from sustained growth. 

However, poverty reduction was not realized even when the country was experiencing strong 

economic growth in the 1960s and 1970s. As a result, the growth led poverty reduction 

approach has been criticized on the grounds that it ignores the non-income aspects of poverty. 

In a participatory poverty assessment study (AMREF 1998 a,b,c,d), some Kenyan communities 

claimed that neither their district authorities nor the local governments had initiated effective 

poverty-alleviation measures. The communities attributed the lack of such to the failure by the 

administration to involve them in the development process. Thus, the consensus in 

development is that beneficiaries of anti-poverty programmes should be involved in the design 

and implementation of such programmes since they have valuable contributions to make in the 

design of these programmes. They can provide the data and detailed insights into the causes, 

nature and extent of poverty, as well as on what can be done to effectively tackle it (KIPRRA, 

2000). The recently introduced constituency development fund is expected to go a long way in 

enabling this since it is the stakeholders who determine their development priorities.  
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The relationship between the incidence of poverty and the livestock sector is often rather 

subtle. The most direct impact on poverty can be discerned when the sector offers employment 

opportunities to the poor with remuneration levels that are not sufficient to lift them out of 

poverty. But the literature on livestock rearing in Kenya describes how heterogeneous livestock 

activities can be, and suggest that they can be divided into two groups of income sources: high 

income activities which mainly result from diary farming and low income activities which 

mainly result from beef production (intensification and extensification). The latter activities 

can be quite common among the livestock keepers in the lowlands particularly in the Coast, 

North Eastern and Eastern provinces. The former is mainly found in the highlands and Rift 

Valley areas. However, even if the ‘low income’ activities may offer no realistic prospects of 

lifting communities and households out of poverty, such income sources are clearly very 

important from a social welfare perspective, since they help reduce the severity of deprivation 

for many communities and families. In addition, for certain groups of the population who are in 

the ASAL and are unable to participate in productive farming these livestock keeping activities 

may offer the only means to some economic security (a safety net).    

 

The Kenyan government has however continued to encourage farmers to engage in commercial 

livestock farming and today the cattle population (the most popular livestock among the 

livestock keepers) exceeds ten million heads with the large scale farmers keeping animals both 

for commercial and subsistence purposes. The government has of late taken steps to improve 

dairy farming by increasing extension services, extending credit facilities to farmers through 

co-operatives, investing in research and availing training opportunities. It has also set up 

demonstration farms and projects which breed high quality bulls (GOK, 2003).   

 

The common view of the rangelands among policymakers in Kenya is that of a sector driven 

entirely by livestock keeping, and rural welfare in the rangelands is equated with income. Thus, 

policymakers view state efforts to combat rural poverty in the rangelands as policies to 

enhance productivity among livestock keepers.  

 

The issue of poverty among livestock keepers has however received little attention by 

researchers and policymakers. Most analyses on livestock keeping in Kenya are a by-product 

of the literature on rural poverty such as Mwabu et al., (2000), Oyugi (2000) and Geda et al., 
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(2001) that deal with measurement, profile and determinants of poverty in Kenya using overall 

expenditures and food expenditures as dependent variables. These studies show that poverty 

prevalence is highest in the rural areas and that regional disparities are large and increasing. 

However, they do not include natural endowments in their analyses yet it is likely that certain 

natural endowments may enhance the opportunities of the rural poor to diversify incomes and 

at the same time lift themselves out of poverty.    

 

As regards environment, poverty is a major cause and consequence of the environmental 

degradation and resource depletion where major environmental challenges include 

deforestation, soil degradation and desertification, declining biodiversity and marine resources 

(Okwi et al 2005). Others include water scarcity and deterioration of water and air quality. 

Thus, though the country is implementing new national and multilateral environmental 

policies, their effectiveness is low. There is growing recognition that national environmental 

policies are more likely to be effectively implemented if they are supported by an informed and 

involved public. Thus environmental awareness and education programmes are expanding 

almost everywhere, while indigenous knowledge receives greater recognition and is 

increasingly used (UNEP, 2000)1  

 

The most pressing environmental health problems worldwide today in terms of their role in 

causing death and illness, are those associated with poor households and communities. In rural 

areas and in peri-urban slums in Kenya, inadequate shelter, overcrowding, inadequate safe 

water and sanitation are by far the greatest threats to human health (Dasgupta and Karl-Goran, 

1994). According to World Health Organization (WHO) and the World Bank, environmental 

improvements at the household and community levels would make the greatest difference for 

global health. Specifically, the World Bank has calculated that improvements in the local 

environmental conditions facing the poor can lower the incidence of major killer diseases by 

up to 40 percent (Eckholm 1976). 

 

By targeting policies that help to reduce environmental threats that contribute to both ill health 

and poverty, it is possible to produce good health faster than income growth would do on its 

                                                 
1 http://www.unep.org/geo2000 
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own. Improving living conditions might itself help reduce poverty. This means that removing 

the environmental hazards that make people sick could keep people productive, which would 

in turn raise their incomes. Thus, continued environmental deterioration is a source of 

continued impoverishment. Livestock keepers depend on natural resources in the most 

vulnerable areas of Kenya and thus suffer most from deterioration in the environment because 

of the threat to their livelihoods and aggravation of health risks.  

 

There is a need to understand the interrelationships between poverty, livestock and 

environment in order to reduce poverty among the livestock keepers. Despite the fact that 

pastoralism presents a very efficient system to utilizing the heterogeinety of the rangelands, 

poor livestock keepers are often portrayed as having large  numbers of livestock, which in turn 

contribute to environmental degradation thus compounding the problem of poverty. Pastoral 

areas are marginal and have largely relied on organized traditional institutions. However un 

informed government policies and actions that undermine such institutions have made these 

areas more vulnerable to degradation. Creating a balance in these areas is therefore key to 

reducing poverty among the pastoralists. Understanding interrelationship between the three is 

therefore critical as is sought in this article.  

 

Generally, we test the hypothesis that agro-climatic variables and market access explain the 

variation in poverty among the livestock keepers in Kenya. The ability of agro-climatic 

variables to explain differences in poverty indicates that poverty in remote areas may be linked 

to natural resource availability and lack of market access (see also Pender, et al., 1999; Pender, 

2001), in this case for animals. Better roads and access to markets are expected to favor better 

returns among the livestock keepers and should therefore contribute to better welfare or higher 

incomes (Pender et al., 1999). Presence of social services such as hospitals and, schools may 

influence welfare by promoting better health, livelihood and other human capital variables. In 

this study, we investigate the impacts of these spatial variables. Such an understanding of 

poverty can effectively guide governments’ and others’ efforts to reduce poverty by adopting 

more specific and precise policy options specifically targeted to livestock farmers. 
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3.0 Data and Empirical Implementation 

3.1 Data 
 
The data on poverty come from the poverty mapping results that were obtained from the 1997 

Welfare Monitoring Survey (WMS) and the 1999 Population and Housing Census. The survey 

is similar to the LSMS conducted by the World Bank in various developing countries (see 

Grosh and Glewwe, 1995 and World Bank 1991). The 1999 Population and Housing Census 

were conducted by the same institution (CBS) and meant to cover the entire population in both 

rural and urban areas. The census and survey data have several common household variables 

such as household size composition, education, housing characteristics, access to utilities and 

location of residences. In this study, the location level poverty headcount estimates that were 

derived from the poverty mapping study for Kenya (CBS and ILRI, 2003) is used as the 

dependent variable.  This paper uses only the rural sample for the rangelands, comprising of 

1159 locations.   

 

The spatial analysis portion of this project uses a variety of spatially referenced variables 

describing topography, land cover and land use, climate, demography and market/town access 

derived from GIS data layers. Geo-referenced information from various government 

departments and institutions is used. Information about vegetation cover such as forests, 

grassland, wetlands, water resources and land use such as subsistence and commercial 

farmland, and other landscape aspects were obtained from Multipurpose Africover Database 

for Environmental Resources (MADE). Data on demographic attributes was obtained from 

CBS described above.  Other natural and physical capital layers were derived from a wide 

array of local and global layers (for detailed description of data sources, see Table A1 in 

appendices).  The data is extremely rich in bio-physical factors and also includes the 

distribution of infrastructure such as markets, towns and others. Subsets of these variables are 

used as independent variables and they are aggregated to the location level.  

3.2 Estimation Strategy 
 
Following the description of the data in the previous sub section, we present briefly the 

empirical model. We adopt the spatial regression approach developed by Anselin (1988) and 
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used by Benson et al (2005) and Minot et al (2003). The analysis is typically divided into three 

stages:  

• a simple ordinary least squares regression;  

• a global spatial regression and; 

• a local spatial regression analysis.  

These regression analyses aim to improve our understanding of how communities might be 

assisted in reducing poverty by targeting key spatial determinants of poverty.  

3.2.1 Generalized OLS regression model 
 
Applied to this context, we estimate the OLS regression model as: 

iii Xy εβ +=     (3) 

 

where Y is a vector of observations on the dependent variable; X is a matrix of independent 

variables; ß is a vector of coefficients, and e is a vector of random errors. Despite the 

popularity of this approach, problems of spatial autocorrelation limit its application in 

analyzing spatial relationships. Spatial autocorrelation occurs if variables in one area are 

affected by the value of that variable in a neighboring area. Spatial autocorrelation can also 

manifest itself through the correlation of error terms. One way in which the error terms may be 

correlated is spatially, as evidenced by observations from locations near to each other having 

model residuals of a similar magnitude. Therefore, unless we correct for spatial 

autocorrelation, the assumptions of OLS regression are violated and thus the estimates derived 

from this method are likely to be biased. To assess spatial autocorrelation, the clustering of the 

residuals from the OLS model will be examined using the Moran’s I statistic and the 

Langrange multiplier index. 

3.2.2 Global spatial regression model 
 
The literature on spatial econometrics identifies two types of spatial dependence2. First, the 

spatial dependence could be a result of the level of poverty (in this case our dependent 

variable) in one location affecting the level of poverty in another location, through for 

                                                 
2 See Anselin 1988, 1992 for detailed discussion of how to correct for spatial autocorrelation 
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example, trade or investment linkages. Such a relationship is modeled as a spatial lag model as 

follows: 

   

jjj
j

iji Xywy εβδ ++= ∑
≠1

     (4) 

 Where  iy is the dependent variable for area i 
 δ  is the spatial autoregressive coefficient 
 ijw  is the spatial weight reflecting the proximity of i and j  
 jy  is the dependent variable for area j 
 β  is a vector of coefficients 
 jX  is a matrix of explanatory variables, and  
 jε    is the error term. 

 
The spatial weights matrix, w, represents the degree of proximity between each pair of spatial 

observations. It is usually a binary variable based on whether the two areas are contiguous or a 

continuous variable based on a function of distance between the two areas or locations. 

Omitting this adjustment will result in the coefficients being biased and inconsistent.  

 

A second type of spatial dependence can be attributed to the error term of the model (see 

Anselin, 1992). This kind of spatial dependence occurs if there are variables that are omitted 

from the regression model but do have an effect on the dependent variable and they are 

spatially correlated. Such a relationship can be modeled as a spatial error model: 

  ijj
j

ijji ywXy εελβ ++= ∑
≠1

     (5) 

Where   iy is the dependent variable for area i 
 λ  is the spatial autoregressive coefficient 
 ijw  is the spatial weight reflecting the proximity of i and j  
 jy  is the dependent variable for area j 
 β  is a vector of coefficients 
 jX  is a matrix of explanatory variables, and  
 jε    is the error term. 

 

Here, the error term is disaggregated into the spatial lag of the error term of neighboring 

locations and the residual error term for the spatial unit in question. When there is spatial error 
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dependence, OLS coefficients will be unbiased but not efficient (the standard errors will be 

larger than if there were no omitted variables) (Anselin, 1992). 

 

In order to select which model to use, a Lagrange Multiplier test and Morans I is used to assess 

the statistical significance of the coefficients in each model, respectively. Where spatial 

autocorrelation is likely, usually the result of the test on each will be significant. The preferred 

model in such a case is the one with the highest Lagrange multiplier test value (Anselin & Rey, 

1991). 

3.2.3 Local Spatial Regression Analysis: Geographically Weighted Regression 
 

The models described above are referred to as global models because they assume that the 

relationship between poverty and the geographic factors is the same across the country. That is, 

the relationship is spatially stationary. Such an assumption might be reasonable when one is 

considering physical processes that are governed by universal physical relationships. However, 

at least at the generalized level of our analysis, few social processes will be found to be 

constant over space (Fotheringham, et al., 2002, p. 9). The generalized regression models 

described earlier will hide this potential heterogeneity, or spatial non-stationarity, in the 

determinants of the prevalence of poverty (Benson, 2005). 

 

Local spatial regression analysis does not make this assumption and examines spatial 

variations in the relationship between poverty and geographic factors. A moving window 

regression framework, in which numerous regression models are estimated, each centered on a 

“regression point” and including nearby observations defined by a “kernel bandwidth” is used. 

Localized coefficient estimates are generated for each regression point.  

 

Using this method, which is closely related to the OLS, the results will be the usual standard 

regression output. This allows the regression output (including coefficients and R2) to be 

mapped, showing their variation over space. This makes this technique particularly useful for 

analyzing relationships in spatial data (see Brunsdon, et al., 1996, for details of this method). 

 

A standard global regression model, written as: 
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                                      ε++= ∑ j jiji axay 0            (6) 

can be extended to a local regression model, written as: 

                                          ε++= ∑ j ijiji axay 0                   (7)                         

 

where  y is the dependent variable, 
x is the independent variable, 

ija  is the regression coefficient, 

0a is a constant, 
i  is an index for the location, 
j  is an index for the independent variable, and 
ε  is the error term. 

 

For each local regression at a regression point i, the observations are weighted depending on 

the distance from the regression point to the observation j. The size of the neighborhood to 

which the spatial weight matrix applies can be a fixed distance (bandwidth) or, alternatively, 

can be based on k-nearest neighbors with a varying, adaptive bandwidth applied to the 

weighting function. Finally, we should point out that the distance between spatial units is the 

distance between the center points of locations.  

 

Tests can also be done to determine whether a local model describes better the relationships 

than a global model by comparing global and local values of R2. Furthermore, Fotheringham et 

al., (2002) proposed a Monte Carlo test of whether spatial variations in the estimated 

coefficients are statistically significant. The test involves randomly adjusting the geographic 

location of the observations numerous times, running a GWR on each, and then comparing 

statistically the parameter estimates for the randomly distributed observations with the 

parameter estimates of the actual geographic distribution (Minot et al., 2003). 

4.0 The Determinants of Poverty among Poor Livestock Farmers (rangelands) in Kenya 
 

Tables 1 to 4 present the results from the estimation models for the rangelands, estimated 

separately from the other areas. The rangelands provide an interesting case for analysis given 

that they account for a large proportion of poverty in Kenya and have specific features which 

make them unique from the other areas of Kenya. For example, these areas have inadequate 
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infrastructure and are very remote. Moreover, these areas are typical livestock rearing areas 

and provide substantial supplies of beef and milk to the other areas of Kenya. Livestock, as we 

know, is a vital component of well being and provides a pathway out of poverty. Therefore, 

specific analysis of the determinants of poverty among poor livestock farmers could provide 

practical intervention areas if poverty is to be reduced in these areas and the role of livestock 

enhanced.  

 

The dependent variable used in the regressions is the poverty rate for each of the rural locations 

in the rangelands of Kenya. The explanatory variables included are listed in Table A1 in the 

appendices. About 1159 locations are used in the estimation.  

 

Table 1 below presents the tests for spatial dependence when an OLS model was estimated 

with location level poverty rate as the dependent variable against the variables listed in Table 

A1. Row-standardized weights are used to test for spatial dependence. According to the results, 

the tests for spatial dependence are all highly significant and the spatial error model should be 

used to correct for spatial autocorrelation.  

 

Table 1. Diagnostics for spatial dependence 
FOR WEIGHT MATRIX :(row-standardized weights)     
TEST                                       Value Probability  
Moran's I  33.5100 0.0000 
Lagrange Multiplier (lag)       738.6246 0.0000 
Robust LM (lag)                 88.3999 0.0000 
Lagrange Multiplier (error)      849.5040 0.0000 
Robust LM (error)             199.2792 0.0000 
Source: Authors computations 

 

4.1 Spatial Error Model 
 

Table 2 below shows the results of the spatial error model based on a regression of a set of 

unrestricted exogenous variables on poverty rate. The model explains more than 60 percent of 

the variation in rural poverty and 14 of the 22 coefficients are statistically significant. Based on 



 12

the preferred parameter estimates shown in Table 2 below, the following points about the 

determinants of poverty among livestock keepers are notable.  

 

Table 2. Results of the spatial error model 
Dependent Variable Poverty incidence    
Variable Coefficient Std.Error Probability 
CONSTANT 0.9318 0.0552 0.0000 
Demographic     
POPDEN 0.0000 0.0000 0.7967 
Provincial dummy variables    
reg3 (Coast) -0.1070 0.0396 0.0069 
reg4 (East)  0.0218 0.0262 0.4065 
reg5 (North Eastern)  0.0716 0.0379 0.0587 
Reg7 (Rift Valley) -0.0344 0.0190 0.0704 
Distance and travel time    
Average travel time to Type 1 or 2 Road (minutes) 0.0000 0.0000 0.1501 
Mean distance to town 50,000 people 0.0001 0.0002 0.4458 
Mean distance to town 200,000 people 0.0000 0.0000 0.1096 
Land use    
Percent of location under grass -0.0006 0.0004 0.1240 
Percent of location under farmland -0.0005 0.0002 0.0474 
Percent of location wooded 0.0001 0.0002 0.6391 
Percent of location under wetland -0.0013 0.0006 0.0347 
Natural Factors    
Average Elevation (meters above sea level) -0.0001 0.0000 0.0004 
Percent of location with 4 - 8% slope 0.0018 0.0003 0.0000 
Percent of location with 8 - 15% slope -0.0025 0.0005 0.0000 
Percent of location with 15 - 30% slope 0.0022 0.0006 0.0004 
Percent of location with over 30% slope 0.0015 0.0005 0.0024 
Percent of location with LGP less than 60 days 0.0002 0.0002 0.3523 
Percent of location with LGP 180 days  -0.0007 0.0001 0.0000 
Good soil (dummy) -0.0146 0.0074 0.0491 
LAMBDA 0.8559 0.0260 0.0000 
Observations 1159   
Adjusted R-squared 0.6069   
Log likelihood 1089.3881   
Source: Authors computations 

 

Soil 

The coefficient for the variable good soil has a significant negative effect on community level 

welfare in the rangelands. The inverse relation between good soil and poverty, while an 
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expected finding, is critically linked to the issue of agricultural potential or production. This 

result points to the ability of communities with better soils to compliment their earnings and 

livelihoods through farming unlike those with poor soils. Another reason for this inverse 

relationship could be that good soils lead to higher quality pasture and  therefore increased 

animal production.  Given the strength of this result and its dependence on other variables such 

as rainfall or irrigation, much gain can be obtained from this result. This result is not surprising 

and strongly justifies the need for diversification of income activities in these areas through 

farming and where possible attempts should be made to improve soil and irrigation in these 

areas.    

 

Agro-climatic variables 

Another result that is noteworthy is the length of growing period. Length of growing period 

refers to the period when temperature and moisture conditions are such to allow crop growth.  

To interpret the results, note that in rural areas, the longer the growing period the better the 

conditions for farming and the less likely the area is to be poor. Keeping in mind these facts, 

the findings can be explained as follows. It is not surprising the LGP affects rural poverty 

because poverty in rural areas is closely associated with agriculture. Locations in the rural 

areas of Kenya that have longer growing periods are capable of growing a variety of crops 

including perishable vegetables, maize, beans and even cash crops such as tea and sugar cane. 

It is therefore common that for rural locations that have longer growing periods, the rates of 

poverty are likely to be lower, ceteris paribus. A similar argument can be made regarding 

locations that have shorter growing periods. The implication of this result is rather direct and 

can be a point of emphasis in poverty alleviation programmes. These areas have the potential 

of both crop and livestock production. 

 

Wetlands and grasslands 

Water points and wetlands are important determinants of poverty among poor livestock 

farmers or in the rangelands. The effect of having larger water points and wetlands is negative 

and significant. Similarly, more grassland in the location is related to lower levels of poverty. 

This obviously reflects the effects of greater dependency of these communities on pasture for 

their livestock and water for their livestock and themselves. This result is not surprising given 

that about 90% of the population in the rangelands depend on pastoralism for their livelihoods.   
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The fact that locations with larger areas under wetlands will tend to have lower poverty rates is 

also not surprising. These results agree with those for the national model for Kenya (see Okwi 

et al., 2005), which show that larger areas of the location under wetlands means less poverty. 

 

Farmlands 

With respect to the share of land under farmland, the results are as expected. An increase in the 

area of a location under farmland reduces the location’s poverty rate. This implies that an 

additional increase in farming area spurs significantly the location’s participation in farming. 

This implies diversification of activities from the traditional livestock rearing hence less 

reliance on livestock income. Diversification into farming activities increases the locations 

potential to earn agricultural income.  

 

Elevation and Slope 

An increase in elevation of the location by one meter has a significant negative effect on 

poverty.   In other words, high elevations contribute negatively to rural poverty. This result is 

not consistent with the national model. This may be due to the fact that livestock producing 

areas in the high lands are the real agricultural high-potential areas and are therefore likely to 

be less poor compared to the flat areas of the rangelands. Another result that is noteworthy is 

the association between the slope variables and poverty. All the slope variables (share of land 

with a slope of 4-8 percent, 8-15 percent, 15-30 percent and above 30 percent) are statistically 

significant. With the exception of locations with 8-15 percent slope, the rest are positive and 

statistically significant. The results indicate that the amount of slope strongly explains the 

poverty levels in a rural location and locations with larger area of sloped land will have higher 

poverty rates than those with more flat area of about 8-15 percent slope. The negative effect 

could be due to some collinearity between these variables. Again, this result is not surprising 

given the difficulties associated with cultivation on sloped land. This results points to the need 

to introduce better farming methods like terracing and grazing in these areas.  

 

Demographic variables 

Among the demographic related variables, only the level of income inequality is negatively 

significant. The results arising from this variable agree with those from CBS and ILRI (2003) 
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which show that areas with higher inequality tend to have lower poverty rates. This result 

captures the variation in poverty levels as it is often true that there is a tendency for poor 

communities to locate themselves together hence the inequality levels are not very high among 

the poor communities. Like in the (ILRI and CBS, 2005) study, this result is capturing the 

cases of areas with high potential and probably urban growth. Finally, among the rangelands, 

the location variables or provincial dummies variables are important, though the levels may be 

different. When dummy variables for the provinces where rangelands are found are included in 

the rural poverty model, they are jointly significant. Relative to the other regions, Coast, North 

eastern and Rift Valley are among the significant location variables.  

 

Our results concerning the determinants of poverty among poor livestock farmers in the 

rangelands provide very interesting findings. The soil quality, agro climatic conditions, land 

use under wetlands and farming, slope and elevation, income inequality and location specific 

variables have direct effects on rural poverty. All these variables have the expected sign 

although the magnitude of the coefficients varies and is in some cases very small. It is not 

surprising that these variables explain more than 60 percent of the variation in location level 

poverty in the rangelands of Kenya. The experience from the rangelands suggests that it is 

possible to isolate general factors affecting poverty in the rangelands. These results are 

important as they provide specific information about the pattern and spatial determinants of 

poverty in the rangelands of Kenya, which is of importance in designing effective poverty 

alleviation policies.   

4.2 Spatial Variation in Poverty Determinants  
 
In this section, we present the results of an analysis of the spatial variation in relationships 

between poverty and a number of agro-ecological variables (Table 3). The Geographically 

weighted regression technique is used. This method allows for spatially varying relationships 

between rural poverty and the determinants across the rangelands. The model does not control 

for spatial autocorrelation. Instead, the GWR analysis attempts to explain the nature of spatial 

dependence as part of the local analysis. Therefore, the spatial autocorrelation becomes part of 

what the local GWR model explains.  
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A global model is first estimated. The same regression is then re-estimated using a local model 

based on the geographically-weighted regression technique. First, we present the results of the 

global model. More than 32 percent of the variation on global poverty in the rangelands is 

explained by the variables. Most of the variables have the expected correct sign and are 

significant. These variables show consistency with those from the earlier model. Slope, soil 

quality, length of growing period and land use for farmland and wetlands are significant. 

However, we do not repeat the explanation of these variables here. Instead, we attempt to 

explain whether a local model would bring improvements in the explanatory power of the 

model and whether there are significant spatial variations in the relationship between poverty 

and the independent variables.  

 

Table 3.  Summary results of global model 
 

Variable Parameter Standard  
  Estimate Error T 
Intercept 1.13193 0.04556 24.84479 
gini -1.89441 0.11599 -16.33279 
pden 0.00002 0.00004 0.49258 
elev -0.00005 0.00001 -5.41664 
pcfrm 0.00042 0.00029 1.46745 
pcgrs -0.00142 0.00044 -3.19560 
pc48sp 0.00310 0.00038 8.12871 
p815sp -0.00210 0.00063 -3.32066 
p1530s 0.00136 0.00078 1.72895 
pc30sp 0.00137 0.00057 2.38402 
trod12 0.00000 0.00001 -0.27440 
lgp60 0.00048 0.00016 3.03990 
gdsoil -0.02892 0.00865 -3.34254 
dst502 -0.00020 0.00008 -2.58885 
dt2002 0.00001 0.00001 1.28147 
pcwod 0.00040 0.00021 1.94122 
pcwtld -0.00182 0.00073 -2.49048 
lgp180 -0.00041 0.00013 -3.25238 
Adjusted R-square.. 0.321775  
Number of  observations 1159  

                  Source: Authors computations 

 

The local model explains 69 percent of the variation in location level poverty in the rangelands. 

However, these variables do not include the location dummy variables. The implication of this 
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result is that the local model presents a better fit by about 37 percentage points. Likewise, the 

residual sum of squares for the local model is about 3 times less than for the global model (6.2 

compared to 16.9 for the global model). From these diagnostics, it is clear that the local model 

has smaller errors and a better fit than the global model. 

 

Figure A3 shows the local values of the adjusted R-Square for each rural location in Kenya. 

The expectation from this kind of exposition is that examining the pattern of areas with low R 

square statistics will enable the determination of any missing variables in the model. It is 

evident that in all the locations, the value of the R-square from the local model is higher than 

the global model score of 0.32.   

 

The results of the GWR model can be useful in for those interested in a particular location or 

area in the rangelands of Kenya and can be used to obtain a multivariate understanding of the 

important location level determinants of poverty. An assessment of the maps provides a clear 

view of which locations have stronger explanatory power from the selected variables. 

 

The spatial variation in the variables used is presented in Table A2 below. From this result, a 

clear variation is observed over space in all the variables that were used in the regression.   

5.0. Poverty Simulations 
 
In this section we test the effect of different policy initiatives on the proportion of the poor in 

the rangelands. Clearly, there are an infinite number of permutations of policy changes that can 

be considered, and we limit our results to a few indicative cases. The effects of a policy change 

are simulated by changing the values of one or more of the explanatory variables in accord 

with the policy in question. The changes in explanatory variables result in changes in the 

predicted probabilities, and these are taken to be the effect of the policy. However, the results 

of the simulations should be treated as suggestions that are plausible but not real, and therefore 

treated with caution.  

 

The simulation study in this case is defined by interventions aimed at improving welfare. Our 

desired result is to reduce the percentage of poor people in the Locations. We therefore suggest 

interventions in soil improvement in areas where the rainfall is above the rangelands mean of 
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810m and a reduction in non monetary access costs. In our model non-monetary access costs 

are measured by travel time. The simulation assumes that improvements are made to roads in 

these areas so as to reduce every ones travel time to the nearest road (tarmac or murram) to 

within one hour or less (i.e. to reduce the probability of traveling more than one hour to the 

nearest road to zero). This is a fairly egalitarian change because our data show that the median 

travel times are similar for most of the areas in the rangelands.   

  

Table 4 below presents the results of the soil and travel time simulations. They report the 

expected change in poverty due to improvement in soil conditions (in areas with relatively 

higher rainfall than the rangeland mean of 810mm.  The results show that improving soils in 

this area alone can generate substantial improvements in welfare by reducing poverty rates 

from 56 percent to 50.4 percent, but, of course holding other variables constant. Even though 

the aggregate changes in poverty appear to be modest, the effects may be larger if other 

variables are included in the model. At this point, the focus should be more on the direction of 

change rather than the magnitude. Under the travel time scenario, a reduction in travel time to 

less than an hour reduces the poverty from 56 percent to 48. Therefore, improving road 

infrastructure in the Rangelands will pay off in terms of improved overall welfare at the 

Location level. The missing comparison of this simulation is the imputed cost of soil 

improvement and road construction in these areas. The study also does not provide options to 

cover costs of road construction and soil improvement. Generally, there would be relatively 

large welfare improvement among the communities of the rangelands if there are interventions 

in these two areas.  

 
Table 4.  Impact of changes in soils and market access: An Illustrative Simulation 
 
Variable Obs Level Std. Dev. 
Base Poverty Rate before soil improvement 1159 55.9 0.147 
Poverty rate after soil improvement 1159 50.4 0.126 
Poverty rate after road improvement  1159 48.3 0.144 

 

6.0 Conclusions and Implications for Policy 
 
Rural poverty in the rangelands, where most livestock farmers are, remains a crucial part of the 

poverty story in Kenya as a whole. Kenya is largely a rural based country and poverty in the 
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rural areas is so widespread and persistent that more than half of the country’s poor are found 

in the rural areas. Add this to the fact that rural poverty itself appears to be concentrated among 

the livestock farms in the rangelands, and it seems clear that the economy of the rangelands 

must remain a central focal point for policymakers aiming to alleviate poverty.  

 

We investigated the determinants of poverty in the rural rangelands of Kenya. Our approach to 

modeling the determinants of poverty is to model the determinants of the location level welfare 

indicator, namely poverty incidence. Three different models are estimated, the OLS, global and 

local regression models. A number of geographic variables are included in the model as 

explanatory variables. We use rural regression models to predict changes in poverty levels 

from simulated policy changes.  

 

A key conclusion of our study has to do with the important instrumental role of geographic 

conditions in determining poverty rates. The results show the need to take into consideration 

spatial variables when undertaking such studies with likelihood to influence policy.  The 

results also give an indication of the need to base conclusions on multistage analysis since 

different factors were found useful at the various scales.  

 

There are several geographical factors influencing poverty among the livestock keepers in 

Kenya. The magnitude, however, changes with the different variables. Soil quality, agro-

climatic variables, wetlands and farmlands, proportion of the location under slope, elevation 

and income inequality variables tend to have significant effects of poverty. The latter result 

implies that the higher income households tend to be very concentrated in the main economic 

centers where many of the productive activities are based, hence they have low poverty in 

those locations. Levels of poverty are high in the low inequality areas, reflecting less economic 

opportunities available to households in these areas. 

 

Besides identifying some of the key contributory causes of poverty in rangelands of Kenya at 

location level, the other objective of this paper was to carry out simulation analysis. This has 

been considered at two levels, first looking at the factors which can be influenced by policy or 

area amenable to change. Within this framework, poverty is seen to rise or decline if either (a) 

a change in the conditions due to a policy effect can lead to a rise or fall in poverty at the 
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location level; or (b) analysis of changes in either direction of certain important geographic 

conditions that have significant effects on the level of poverty. We can observe that 

improvements in soil and road infrastructure will reduce poverty by 5 and 7 percentage points, 

respectively. Broadly therefore, this analysis provides important spatial  information about the 

determinants of poverty and how changes in policy can affect location level poverty in the 

rangelands of Kenya.  
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Appendices. 

Table A1. Description of Variables 
Short description Source Explanation 
Agroclimatological 
Annual Rainfall (mm) The WorldClim interpolated global 

terrestrial climate surfaces. Version 1.3.  
The average annual rainfall within the location 
boundaries, calculated as the sum of all the monthly 
rainfall figures derived from the original 
Worldclim1.3 dataset of monthly layers.   

Rainfall coefficient of 
variation 

The WorldClim interpolated global 
terrestrial climate surfaces. Version 1.3. 

The average coefficient of variation (CV) of rainfall 
between the months within 1 year within the location 
boundaries. This variable was derived from the 
worldclim1.3 dataset of bio-climatic information, 
which describes the “rainfall seasonality”. 

Distance and Access to services 
Travel time to 
municipality 

- Africover landcover multipurpose 
database (FAO) 
- NASA, Shuttle Radar Topography 
Mission (SRTM) 
- World Database on Protected Areas 
(WDPA - sea.unep-wcmc.org/wdbpa) 
- Roads - ASARECA 
- Settlements - CBS 
 

This variable represents the average travel time 
from any place within the location to the nearest 
municipality (according to definitions of CBS). Travel 
time is a function of slope, road type and 
“impediments” (i.e. wetlands, water bodies and 
natural parks).  The table below summarizes the 
travel times: 
 

Travel time to town Idem above This variable represents the average travel time 
from any place within the location to the nearest 
town (according to definitions of CBS). 

Travel time to trade 
centre 

Idem above This variable represents the average travel time 
from any place within the location to the nearest 
trade centre (according to definitions of CBS). 

Travel time to market 
centre 

Idem above This variable represents the average travel time 
from any place within the location to the nearest 
market centre (according to definitions of CBS). 

Travel time to type 1 
road 

Idem above This variable represents the average travel time 
from any place within the location to the nearest 
road of type 1. 
Type 1: Tarmac/All Weather Bound 
Type 2: Murram/All Weather Loose 
Type 3: Earth/Dry Weather 

Travel time to type 1 
or 2 road 

Idem above This variable represents the average travel time 
from any place within the location to the nearest 
road of type 1 or 2. 

Travel time to type 1, 
2 or 3 road 

Idem above This variable represents the average travel time 
from any place within the location to the nearest 
road of type 1, 2 or 3. 

Travel time to type 1, 
2 or 3 road 

Idem above This variable represents the average travel time 
from any place within the location to the nearest 
road of type 1, 2 or 3. 

Land use  
Percent of location 
under Protected 
Area 

World Database on Protected Areas 
(WDPA - sea.unep-wcmc.org/wdbpa) 

This variable represents the percent of location that 
is under the Protected Area. 

Percent of location 
under Wetlands 

Africover landcover multipurpose 
database (FAO) 

The original land cover was produced from visual 
interpretation of digitally enhanced LANDSAT TM 
images (Bands 4,3,2) acquired mainly in 1999. 
Wetland areas are extracted on the basis of code1 
of the original layer (considered to be wetland 
areas) 
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Percent of location 
Arable land (I.e. LGP 
> 60 days) 

Jones P.G., 2004. Report on preparation 
of growing season days coverages for 
Hadley 3 scenarios A2 and B2, 
Consultant’s report, ILRI 

The variable describes the percentage of the 
location that is arable.  Arable land was defined as 
land with a length of growing period of more than 60 
days per year. 
 

Arable land between 
30 and 60 % (1=yes 
; 0=no) 

Jones P.G., 2004. Report on preparation 
of growing season days coverages for 
Hadley 3 scenarios A2 and B2, 
Consultant’s report, ILRI. 

This variable takes a value of 1 if the arable land is 
30-60% of the location’s area, and 0 otherwise. 
Arable land was defined as land with a length of 
growing period of more than 60 days per year. 
 

Percent of location 
under water 

Africover landcover multipurpose 
database (FAO) 

The original land cover has been produced from 
visual interpretation of digitally enhanced LANDSAT 
TM images (Bands 4,3,2) acquired mainly in 1999. 
Water areas extracted on the basis of code1 of the 
original layer (considered to be water bodies: 7WP, 
7WP-Y, 8WFP). 

Percent of location 
that is Built-up 

Africover landcover multipurpose 
database (FAO) 

The original land cover has been produced from 
visual interpretation of digitally enhanced LANDSAT 
TM images (Bands 4,3,2) acquired mainly in 1999. 
Build-up areas extracted on the basis of code1 of 
the original layer (considered to be build-up areas: 
5U, 5UC, 5UR, 5I, 5A). 

Percent of location 
under forest 

Africover landcover multipurpose 
database (FAO) 

The original land cover has been produced from 
visual interpretation of digitally enhanced LANDSAT 
TM images (Bands 4,3,2) acquired mainly in 1999. 
Forest areas extracted on the basis of code1 of the 
original layer (considered to be forested areas). The 
resulting shapefile was converted to a raster with 
the following values: 100 = forest (covering about 
100% of the area); 65 = mixed forest (covering 
approx. 65% of the area; 0 = non-forest 
 

Percent of location 
under farmland 

Africover landcover multipurpose 
database (FAO) 

The variable contains the percentage of the 
location’s area that is under agricultural land. 
The original land cover has been produced from 
visual interpretation of digitally enhanced LANDSAT 
TM images (Bands 4,3,2) acquired mainly in 1999. 
Farming areas were extracted on the basis of code1 
of the original layer (considered to be agricultural 
areas).  The resulting shapefile was converted to a 
raster with the following values: 100 = agriculture 
(covering about 100% of the area); 65 = mixed 
agriculture (covering approx. 65% of the area); 
0 = non-agriculture 

Percent of location 
under grass 

Africover landcover multipurpose 
database (FAO) 

The original land cover has been produced from 
visual interpretation of digitally enhanced LANDSAT 
TM images (Bands 4,3,2) acquired mainly in 1999. 
Grass areas extracted on the basis of code1 and 
code2 of the original layer (considered to be 
grassland areas) 

Natural factors   
Arable land more 
than 60 % (1=yes ; 
0=no) 

Jones P.G., 2004. Report on preparation 
of growing season days coverages for 
Hadley 3 scenarios A2 and B2, 
Consultant’s report, ILRI. 

This variable takes a value of 1 if the arable land is 
more than 60% of the location’s area, and 0 
otherwise. Arable land was defined as land with a 
length of growing period of more than 60 days per 
year. 
 

Percent of location 
with Arid or Semi-
Arid land (i.e. LGP 
<= 180 days) 

Jones P.G., 2004. Report on preparation 
of growing season days coverages for 
Hadley 3 scenarios A2 and B2, 
Consultant’s report, ILRI. 

This variable describes the percentage of the 
location that is arid or semi-arid (ASAL). ASAL was 
defined as land with a length of growing period of 
less than 180 days per year. 
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Elevation (masl) NASA, Shuttle Radar Topography 
Mission (SRTM) 

The average elevation in meters above sea level 
within the location. 

Percent of location 
Steep land (I.e. > 
10%) 

NASA, Shuttle Radar Topography 
Mission (SRTM) 

This variable represents the percentage of the 
location’s area that is defined as steep. Steep land 
was defined as having a slope of more than 10%. 
The slope was calculated based on the elevation 
and can be expressed in degrees or percent. 

Percent of location 
with 0 - 4% slope 

NASA, Shuttle Radar Topography 
Mission (SRTM) 

The percentage of the location’s area with a slope 
between 0 and 4 %. 

Percent of location 
with 4 - 8% slope 

NASA, Shuttle Radar Topography 
Mission (SRTM) 

The percentage of the location’s area with a slope 
between 4 and 8 %. 

Percent of location 
with 8 - 15% slope 

NASA, Shuttle Radar Topography 
Mission (SRTM) 

The percentage of the location’s area with a slope 
between 8  and 15 %. 

Percent of location 
with 15 - 30% slope 

NASA, Shuttle Radar Topography 
Mission (SRTM) 

The percentage of the location’s area with a slope 
between 15 and 30 % 

Percent of location 
with over 30% slope 

NASA, Shuttle Radar Topography 
Mission (SRTM) 

The percentage of the location’s area with a slope of 
more than 30 %. 
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 Table A2: Descriptive statistics 
Variable Obs Mean Std. Dev. Min Max 
avg_fgt0 1159 0.56 0.15 0.13 0.91
avg_gini 1159 0.30 0.04 0.19 0.55
popden 1159 86.81 128.35 0.12 1318.44
Elevation 1159 1012.18 646.15 2.82 3087.83
perc_farmlandd 1159 14.62 20.87 0.00 97.95
perc_grass 1159 24.80 13.38 0.00 82.11
perc_wetla~s 1159 1.74 5.41 0.00 51.67
perc_wooded 1159 22.75 22.19 0.00 93.09
perc4_8slop 1159 18.73 14.90 0.00 60.31
perc8_15slop 1159 11.45 11.32 0.00 56.74
perc15_30s~p 1159 8.82 11.02 0.00 59.20
perc30_abo~p 1159 5.72 10.41 0.00 70.87
goodsoil 1159 0.39 0.49 0.00 1.00
lgparids~180 1159 38.54 46.28 0.00 100.00
lgp60days 1159 91.45 25.99 0.00 100.00
t_trav_ro~12 1159 261.26 383.81 7.21 4275.04
d_dist_200k2 1159 2224.22 1831.33 96.19 7982.93
d_dist_50k 1159 117345.30 133542.50 2708.51 547139.10
reg3 1159 0.12 0.33 0.00 1.00
reg4 1159 0.25 0.43 0.00 1.00
reg5 1159 0.17 0.38 0.00 1.00
reg7 1159 0.37 0.48 0.00 1.00
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Figure A1  
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