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Abstract: In software defined networks (SDNs), the controller is a critical resource, yet it is a potential
target for attacks as well. The conventional OpenFlow Discovery Protocol (OFPD) used in building
the topological view for the controller has vulnerabilities that easily allow attackers to poison the
network topology by creating fabricated links with malicious effects. OFDP makes use of the link
layer discovery protocol (LLDP) to discover existing links. However, the LLDP is not efficient at
fabricated link detection. Existing approaches to mitigating this problem have mostly been passive
approaches that depend on observing unexpected behaviour. Examples of such behaviour include
link latency and packet patterns to trigger attack alerts. The problem with the existing solutions is that
their implementations cause longer link discovery time. This implies that a dense SDN would suffer
from huge delays in the link discovery process. In this study, we propose a link fabrication attack
(LFA) mitigation approach (LiFAMA), which is an active mitigation approach and one that minimises
the link discovery time. The approach uses LLDP packet authentication together with keyed-hash-
based message authentication code (HMAC) and a link verification database (PostgreSQL) that
stores records of all known and verified links in the network. This approach was implemented in
an emulated SDN environment using Mininet and a Python-based open-source OpenFlow (POX)
controller. The results show that the approach detects fabricated links in an SDN in real time and
helps mitigate them. Additionally, the link discovery time of LIFAMA out-competes that of an
existing LFA mitigation approach.

Keywords: SDN security; link verification; topology discovery

1. Introduction

Each software defined network’s (SDN) architecture is composed of two separate
planes. These are the control and data planes. This design offers flexibility, as it improves
network control and provides network engineers an easy way to respond to network
requirements. SDN is therefore a good approach for building networks and transforming
dynamic networks into manageable, simplified, centralised ones [1]. Recent research has
shown that traditional networks cannot easily match the growth in demand, as each device
is independent and carries its own brain.

The SDN generally represents the concept of programmable networks. This con-
cept allows network administrators to run inexpensive hardware which is not vendor-
specific/proprietary because of the programmability that allows system configuration at
the controller. Additionally, the end devices do not require any intelligence except flows
which are installed on them by the controller [2]. From the controller, the global network
picture can be seen for all connected devices [3]. This is done by abstraction of the network
logic from hardware implementation into software and promotes network innovation [4].

Electronics 2022, 11, 1581. https://doi.org/10.3390/ electronics11101581

https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics11101581
https://doi.org/10.3390/electronics11101581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6729-5478
https://orcid.org/0000-0002-8232-0299
https://doi.org/10.3390/electronics11101581
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101581?type=check_update&version=1

Electronics 2022, 11, 1581

20f19

The OpenFlow protocol is the most common southbound application programming
interface (API) for SDN. This protocol has a number of vulnerabilities that can be exploited
by adversaries in order to poison the controller’s view of the network. This is mainly done
by crafting LLDP packets and injecting them into the network through a compromised
host. LLDP packets are sent out by the controller during topology discovery as packet-out
messages go to the switches and switches send packet-in messages back to the controller.
Based on the path taken by each LLDP packet, the controller builds the topology links
between different ports of the switches. Unfortunately, adversaries may craft these packets
with specific parameters statically inserted, and the controller may not have a way of
distinguishing between genuine and false packets. This creates forged or fabricated links,
hence the term link fabrication attacks (LFAs).

SDN s provide a number of benefits, including solving and simplifying critical manage-
ment tasks that traditional network management may not be able to. For example, SDNs
solve the device discovery problem in traditional network management by default through
a controller [4].

The advancements in networking introduced by SDNs present security risks and
vulnerabilities, just like any other system. OpenFlow controllers suffer from two kinds of
topology poisoning attacks, link fabrication and host hijacking attacks, as a result of the
fact that they use OFDP for topology discovery [3].

The motivation behind this research was that maintaining security in SDNs should
not have a high cost in terms of delays in the link discovery process, which is exhibited by
the existing approaches [5-7] that mitigate link fabrication attacks. This research mainly
focused of developing a link fabrication attack mitigation approach (LiFAMA) which
makes use of the LLDP and a database. The key contributions of this research are therefore
summarised as follows:

¢ Alink fabrication mitigation approach that minimises the link discovery time com-
pared to conventional approaches while maintaining security.

* A performance analysis of the traditional LLDP, other existing LFA mitigation ap-
proaches and LiFAMA using link discovery and verification time as standard metrics.

*  An LLDP-based packet authentication approach with dynamic keys using hash-based
message authentication code (HMAC).

* A database approach for the link discovery process that stores verified links in a
Structured Query Language (SQL) database.

The rest of the paper is organised as follows: Section 2 discusses related works,
Section 3 presents the relevant technical preliminary information concerning SDN, topology
discovery and HMAC; Section 4 presents the link fabrication attack model; Section 5
presents our proposed LiFAMA; Section 6 describes the security analysis of LIFAMA,
Section 7 describes the experiments carried out and tools used in the study; Section 8
discusses results and performance metrics used; and Section 9 concludes the study.

2. Related Work

A vast number of studies [5-9] on link fabrication attacks in SDNs have proposed
solutions which are heavily predictive and behavioural. However, such approaches are
not reliable, as many false positives are reported. The next paragraphs provide a review of
existing works that report link fabrication and attack control approaches in SDNS.

Dylan et al. [5] proposed a fabricated link detection mechanism based on latency
measurements of the LLDP packet from the time a packet-out is sent to the time a packet-in
is received at the controller. The detection method is based on a statistical analysis of the
various data link latency measurements realised. The major challenge with this type of
mechanism is the number of false positives, and yet there many methods that do not have
a finite expected output. A vetting process was added, but it also creates the possibility
of having false positives hence, making it an unideal discovery method. The latency
differences are not sufficient to distinguish genuine links from fabricated ones.
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Dhawan et al. [6] discussed a number of security attacks in SDN and proposed
SPHINX as a solution to these attacks. SPHINX intercepts all network communications
between switches and the controller. Messages exchanged between the controller and
switches include packet-in and feature-replies. It compares detected network behaviour
with expected or predefined behaviour or policies defined within the controller. It is
designed to detect both known and unknown attacks on SDN topology through learning
network behaviour. This poses a challenge, as the system might encounter attacks that it
might not have been trained to stop or even block legitimate traffic. SPHINX is generally a
data or knowledge-driven solution whose detection accuracy will heavily depend on how
much information is in the knowledge-base. Systems such as SPHNIX can be improved
by introducing the use of semi-supervised learning methods to encounter unknown data.
Currently, machine learning methods are prominent in the detection of attacks in networks
where big-data can be extracted.

Sanaz et al. [9] introduced the link latency attack (LLA) that they claim could not be
detected by TopoGuard and TopoGuard+. LLA is an attack where an adversary adds a
fake or fabricated link through compromised hosts within the network. This is done by
injecting packets into the network, thereby increasing the processing time for the packets.
TopoGuard depends on latency, and with this attack, it could be evaded. They highlighted
that the conventional discovery process lacks authenticity and is vulnerable to topology
poisoning attacks such as the LLA. They proposed a machine learning-based link guard
(MLLG) system to prevent this attack. MLLG verifies the LLDP packet against a dataset
containing various LFAs to validate whether or not the link is valid. The action taken is
to either drop the packet or update the topology database. MLLG was validated against
traditional machine learning methods, including k-nearest neighbour (kNN), multi-layer
perceptron (MLP), logistic regression (LR), support vector machines (SVM) and naive Bayes
(NB). Sanaz et al. [9] did not report on the time MLLG takes to detect the LLA, yet this is
important for mission-critical SDNs where any data loss is a major effect. Validation using
other deep learning approaches, such as convolutional neural networks and long short
term memory networks, would help with gaining further knowledge on which intelligent
model will offer the best detection time.

Sungmin et al. [7] presented a number of vulnerabilities that exist in OpenFlow that
need to be addressed in order to have a secure SDN environment. These include network
topology poisoning and exploitation of the host tracking service. The processes of link
fabrication and replay attacks are explained, and they clearly show the challenges faced by
these kind of attacks. Then, they propose TopoGuard, which was implemented in a flood-
light controller. TopoGuard is a real-time network topology poisoning detection system
that implements packet authentication in order to verify packet authenticity. However, the
TopoGuard mechanism is still susceptible to replay attacks and LLAs, as in Sanaz et al. [9].
Prasad et al. [10] further notes that Topoguard only considers network topology poisoning.
This is why the LLA in [9] could not be detected by TopoGuard. Skowyra et al. [11] defines
port amnesia and port probing as topology attacks against TopoGuard and hence proposed
TopoGuard+. SDN attack detection tools or systems must therefore be designed to cover
diverse possible attack windows. The key issue is to gain knowledge on all possible attack
windows, yet this would require a comprehensive penetration test to be done.

Alimohammadifar et al. [8] proposed the stealthy probing-based verification (SPV)
approach for detecting fabricated links in SDN. The SPV system works by sending out
probing packets at certain intervals and marking links as legitimate or not based on the
responses received from the probing process. Only probing packets are authenticated in
order to prevent forging and replaying of probing packets. SPV allows creation of the link,
and in the event that the probing process is not successfully sent back to the controller, the
link will be taken as a fake link, and hence traffic may not be sent over the fabricated link.
SPV cannot defend against attackers communicating entirely over an out-of-band channel
and creating links that look like genuine links; this could partly be because LLDP packets
are not authenticated. SPV performance can also be poor when probing packets are lost
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during the channel communication, because SPV will assume that such packets were not
returned to the controller due to being fake links. In order to mitigate the weakness in SPV,
the LineSweep algorithm proposed in Kim [12] and Lin [13] can be used.

Sonali et al. [14] discussed the link discovery process and vulnerabilities as a result
of compromised switches. They proposed a mitigation mechanism that uses active-ports
for detection of both host-based and switch-based link discovery attacks in SDN. They
provided an analysis of the impact of topology attacks on routing. They introduced a
switch-based link discovery attack where switches are compromised by changing the
switch MAC —table with forged MAC addresses. The mechanism proposed can detect both
host-based and switch-based attacks. The proposed mechanism monitors active ports on
every switch and active links in the network. An active port cannot connect multiple links
at the same time. The process is monitored through link validation in the switch table.

Noemi et al. [15] sought to simplify network applications by introducing abstraction
through the use of databases. They proposed the use of views to abstract the actual table
structures where the data are stored, to add an extra layer of security. Their main aim was
to manage access control with the SDN network through reflective specification of access
control rules.

The proposed LiFAMA, in contrast to [5-7,9,11], is an active LFA mitigation mechanism
that is not based on expected behaviour of packets but rather predefined settings within the
controller using a link database and packet authentication. This makes management simple,
as the network administrator only focuses on having the correct network parameters
configured. It also makes implementation less resource-intensive and more efficient.

Table 1 shows a summary of existing LFA mitigation approaches for SDNs.

Table 1. Some existing LFA detection and mitigation approaches.

Algorithm Type of Detection Packet Authentication Database

Smyth et al. [5] Passive No No
Dhawan et al. [6] Passive No No
Sungmin et al. [7] Passive No No
Skowyra et al. [11] Passive No No
Alimohammadifar et al. [8] Active Only probing packet No

Sanaz et al. [9] Passive No Dataset of LFAs
Our Proposed LiFAMA Active Yes Yes

3. Technical Preliminaries

In this section, the SDN architectural composition, SDN protocols and cryptographic-
hash-function HMAC are described.

3.1. SDN Architecture

A typical SDN implementation architecture comprises three layers. These include the
application layer, the control layer and the infrastructure layer.

Application Layer: It contains network applications used by organisations, such as
intrusion detection systems, firewalls, traffic policies and load balancers. In traditional
networks, all the above applications would run on specialised hardware, but SDN replaces
that specialized hardware with an application that uses the controller to manage behaviour
of the hardware devices [16]. It is responsible for handling security and business applica-
tions, in summary. This layer communicates with the control layer over the north-bound
interface, as shown in Figure 1, using the application control plane interface (A-CPI) [1].

Control Layer: This layer comprises centralised SDN controller software where all the
intelligence of the SDN resides. The controller manages traffic flow and policies throughout
the network [16] and packet dropping through programming [1]. It controls the overall
SDN functions. In a distributed environment, controllers communicate with each other
through the east-bound and west-bound interfaces. The controller communicates with the
infrastructure layer on the south-bound API, normally using a protocol such as OpenFlow
or netconf [1].
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Infrastructure Layer: Commonly known as the data plane, the infrastructure layer is
made up of both virtual and physical devices, such as switches, routers and access points
to which other devices in the network connect [1]. The main function of the data plane is
forwarding packets according to assigned rules and policies.

An SDN encompasses several types of technologies, including functional separation,
network virtualisation and automation through programmability. It presents an opportu-
nity for programmers to innovate due to its open nature.

SDN ARCHITECTURE

“ APPLICATION LAYER @
&y

Southbound
APl

<> INFRASTRUCTURE LAYER

Figure 1. SDN implementation architecture.

3.2. Topologies

Mininent provides various default network topologies and provides the ability to
create custom topologies for real life network situations. However, in this work, two topolo-
gies inbuilt in Mininent were used, i.e., the tree and linear topologies in Figures 2 and 3,
respectively. The reason for choosing these topologies is that the number of links and varies
for the same number of switches in the network. Usually, tree topology has more links than
the linear topology, creating a good environment to test the link discovery process with our
proposed method.
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Figure 2. Linear topology.
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Figure 3. Tree topology.

3.3. SDN Protocols
3.3.1. OpenFlow Discovery Protocol (OFDP)

OFDP is the protocol used by OpenFlow controllers to discover the underlying topol-
ogy [17]. The protocol allows the controller to communicate with the less intelligent
forwarding elements such as switches to install flows and forwarding tables. OpenFlow
leverages the OFDP protocol in order to achieve two-way communication between switches
and controllers [17]. In an SDN, OFDP floods the LLDP with minor changes in order to
carry out topology discovery [18]. OFDP works with advertisements only.

3.3.2. Link Layer Discover Protocol (LLDP)

LLDP is a layer-2 protocol that permits directly connected devices to advertise the
existence of physical connections between them. The protocol is based on IEEE 802, which
is mainly wired [18]. It is a vendor neutral protocol, unlike proprietary protocols such as
Cisco Discovery Protocol and Foundry Discovery Protocol, which perform similar functions
to LLDP. LLDP broadcasts the capabilities of the switches.

LLDP packets are sent from each connected interface at a fixed interval as an Ethernet
frame. The basic LLDP PDU comprises a header and type-length-value (TLV) attributes [19].
Each LLDP packet has both mandatory and optional TLVs. The mandatory TLVs are Chassis
ID, which is unique for every switch, Port ID and Time to Live. For POX controller, two
more TLVs are added to the packet-out message, i.e., System Description and End TLV.
Other optional/custom TLVs can be added to carry information relevant for any use the
programmer may deem fit for his or her requirements [20]. Figure 4 shows the LLDP packet
format. Table 2 shows all the TLVs for the LLDP packet.

0 1 2 3
01234567890123456789012345678901
B e e e e e e S e e

| Version | Flags | Time To Live |
Fot-t-t-t-totototodtototot-t-totototodtotot-t-t-totototototot-t-+-+
| TLV-1 Type | TLV-1 Length |
B o o S LT s o s e e e e s

| TLV-1 Value e
B e e i e e S ek i et e s e e S
R e e S et e e et T S ok et R
| TLV-N Type | TLV-N Length

Fotototodototototototodotototototototototototototototototot-tot-t
| TLV-N Value e e
L AL E SE SE EE 25 0 BT B0 BT T S B L ST EE ST R0 B 5 I 1 DT EE FT ST L 1 8 ST BE BT 2

Figure 4. LLDP packet format. Adapted from [19].
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Table 2. TLV type values. Adapted from [18].

TLV Type TLV Name Usage in LLDPDU
0 End of LLDPDU Mandatory
1 Chassis ID Mandatory
2 Port ID Mandatory
3 Time to Live Mandatory
4 Port Description Optional
5 System Name ID Optional
6 System Description Optional
7 System Capabilities Optional
8 Management Address Optional
9-125 Reserved Optional
127 Custom TLVs Optional

An LLDP packet is represented by a dashed line in Figure 5. At first, the controller
creates a LLDP packet and sends it to switch S1 as a packet-out message. On receiving
the packet-out message, the switch will forward the LLDP packet-out port P1 because
the instruction set in the packet-out message contains an instruction: outport = P2. After
receiving the LLDP packet from switch S1, switch 52 will send a packet-in message that
carries the LLDP packet to the controller according to a pre-installed rule in its flow table.
The packet-in message contains some fields to denote the ingress switch S2 and the ingress
port P3. Besides, the LLDP packet has the information about the source switch ID and
source port ID (i.e., Chassis ID and Port ID). Therefore, the controller will deduce that there
exists an internal link from (51, P2) to (S2, P3).

/

PACKET_oUT” “\_PACKET_IN

CONTROLLER

S1 S2

Figure 5. Link discovery process.

3.4. Keyed-Hash Based Message Authentication Code (HMAC)

The hash-based message authentication code (HMAC), also known as keyed hashed
MAC, is a cryptographic algorithm that uses both a key and a cyptographic hash function.
Hash functions that may be used are SHA-1, SHA-256 and MD5. It provides great resistance
to crypto-analysis because of the fact that messages are hashed twice through the IPAD and
OPAD. HMAC s use cryptographic hash functions and keys as a method of authentication
and verification of information [21].
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HMACs provide a way of checking the integrity and authenticity of information
transmitted over or stored over an insecure channel. In a typical scenario, HMACs may
be used between two or more parties. However, when multiple parties are involved, it is
advised that separate keys are used between each pair of communicating parties, since the
key is used in calculation of authentication values.

3.4.1. Why HMAC

*  HMAC:S use hash functions without making changes to the code.

¢ HMAC s handle keys a simple way

e HMACs make it easy to change the underlying hash function in the event that the
underlying hash function used is found to be weak.

The major advantage of using hash functions and HMAC in general is that they are
fast compared to asymmetric key cryptographic algorithms.

The HMAC function comprises a secret key K and a message M over which the
HMAC(K, m) value is computed using Equations (1) and (2).

HMAC(K, M) = H(K @ OPAD || H(K & IPAD || M)) )

HMAC(K, M) = H(K™ || H(K* || M)) 2)

where H() is the one-way cryptographic hash function, || stands for concatenation and &
denotes the XOR or bitwise exclusive or operation. Outerpad (OPAD) and Innerpad (IPAD)
are blocks that consist of repeated bytes of 0x5¢ and 0x36, respectively. K™ and K* are keys
derived by XORing key K with OPAD and IPAD, respectively.

3.4.2. HMAC Structure

e  H:Hash function (e.g., MD5, SHA-1)

*  IV:Initialisation vector as an input to the hash function. It is an arbitrary fixed-length
number used once during an iteration. It is also called a nounce, meaning number
used once.

*  M: Message input to HMAC broken down into equal blocks from my,my, ..., my,
including the padding block if required, as in Figure 6.

e Kt K* Keys derived by XORing key k with IPAD and OPAD, respectively.

[ K+ m[) m n ]

T
@—- (K'|| Dy)
— Hash code
\Y)

Figure 6. HMAC generation. Adapted from [22].

(HMAC)

Y

3.4.3. How HMAC Works

Key K is shared between the sender and the receiver. From the secret key K, two keys
are derived by padding K with two constants, i.e., the inner-pad (IPAD) and the outer-pad
(OPAD), to achieve a fixed-length key K. Equation (1) is equal to Equation (2).
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The hashing algorithm is applied to (K* || D7) to generate an n-bit output called the
hash code. The first algorithm produces an internal hash of the first derived key using the
IPAD concatenated with the message. The final HMAC code is derived from the result of
the first hash with the second key derived from the OPAD. Figure 6 shows the generation
of the hash code from keys K™ and K* [22].

1.  Key Kisselected such that0 < K < b. If K < b, pad 0s to on the left until K = b, where
b is the block size chosen based on the hashing algorithm to be used. For example, for
sha256 the value of b would be 256 bits.

2. XOR k with IPAD to generate the first derived key K+

Append K* with the message M that is broken down into blocks 1, 11,,.

Apply the hashing Algorithm, H, to (K™ || M) to generate a fixed-length, n-bit output

digest, D;.

Pad the n bits until the length of the digests is b bits long.

XOR K with the OPAD to give a b-bits output K*

Apply the hash algorithm H to (K* || D;), to generate the hash code.

The value of the hash code can then be transmitted.

e

® N

4. Link Fabrication Attack Model

LFA’s aim at making the controller perceive that a direct inter-switch link exists, yet
it is non-extent. The link is normally through an attacker. It is an exploitation of the link
discovery service because of the existence security flaws. Most OpenFlow controllers use
OFDP, and OFDP leverages LLDP. Switches in the network observe the flooded LLDP
traffic and notify the controller with this traffic that links exist between them. The flooded
traffic can be observed by an eavesdropper who can craft LLDP packets and inject them
into the network. The controller, upon receiving these packets, processes them and can infer
existence links. There could be genuine and fabricated links. The link discovery service in
OpenFlow controllers is subject to two conditions.

¢ The propagation path of LLDP frames can only be contained in OpenFlow enabled
switches.

¢  The integrity of the LLDP frames must be ensured during the topology formation
procedure.

An attacker can execute an LFA using at least one malicious host. Case 1 in Figure 7
shows a host H3 directly connected to two switches, hence transparently creating a bridge
between two interfaces of the switches. In cases where the physical distance is a hurdle, this
can be overcome by using an out-of-band communication channel, such as a wireless one.
By using two malicious hosts that communicate through an out-of-band wireless channel,
the attacker can avoid some of these physical restrictions and fabricate links between SDN
switches which are further apart. Crafted packets can be injected into the network using
scapy [23], a packet manipulation tool. In case 2, two compromised hosts, H1 and H2, can
be used to infer a link between the SW1 and SW2.



Electronics 2022, 11, 1581 10 of 19

]

s]\m

|
bricated link

IFa Case 1 Y

H3

:Xt |
—

Fabricated link
Case 2

SF“ sw2
S S
HI H2

Figure 7. Attack scenarios.

5. Proposed Link Fabrication Attack Mitigation Algorithm (LiFAMA)

As OpenFlow discovery protocol packets sent over the network can be analysed by
an attacker connected to any switch within that network, injection of packets is easy. This
kind of environment is deemed to be an insecure one. However, the LLDP packet used for
the discovery process gives leverage to add custom TLVs. In this study, we propose the
addition of authentication information to every packet-out. Addition of this authentication
information in turn ensures the integrity of the packet.

As every SDN is run in a programmable environment, other functionality extensions
can be installed for various purposes depending on the problem to be solved. In this
study, we installed a link verification database. As the name suggests, it is a database for
all known and approved links within the network, and all link discovery packets must
be checked against it. The introduction of a database provides inter-operability across a
wide range of platforms, as databases create abstractions of the logic that simplifies the
management of an SDN. Connections to the database are only allowed to come from the
controller, as there is no need for external devices to connect, hence creating an extra layer
of security for the database. For cases where the database is external to the controller or on
a separate host for reasons such as high availability, measures must be taken to ensure that
such databases are safe from unauthorised modification of records.

For packet integrity and authentication, we use keyed-hash based message authentica-
tion code (HMAC) as the feature to add to the LLDP packet, and for the link verification
database we used PostgreSQL, a structured query language-based database. The addition
of these measures ensures a secure topology discovery process.

Figure 8 details the link discovery process, from generating the packet-out message to
the packet-in message being received and processed by the controller. The process begins
with the generation of an HMAC that is to be embedded in the controller’s packet-out
message as a TLV. The generated HMAC is sent out as part of the discovery packet. For
every link, a unique HMAC value is sent.

The packet-in message received by the controller is checked to see if it matches the
packet-out, if it does not, the controller discards the packet as a potentially forged packet,
but if it does, another layer of validation is in place called a reference database for all links
expected within that control domain. If the second condition is not met, the packet-out is
discarded. This scenario will normally happen if the link is genuine but the link database
has not been updated. If all these checks are passed, the link will then be created. This
algorithm will help stop all sorts of link fabrication attacks, including both host-based and
switch-based topology tampering methods.
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Figure 8. Proposed link fabrication mitigation algorithm (LiFAMA).

The LLDP packet being sent over the network is assumed to be sent over an insecure
channel that has no authentication; therefore, a mechanism of verification is required that
ensures the LLDP packet-in received at the controller is as a result of a packet-out message
sent by the controller. HMAC provides this authentication mechanism and ensures the
integrity of the controller’s view of the network. HMAC is known to be vulnerable to replay
attacks. The approach to prevent this is the use of a dynamic key for every packet-out
message sent and making the controller configured to validate every received HMAC
against the computed HMAC in the packet-out message. The SHA-1 hashing algorithm is
used in the HMAC function.

6. Security Analysis of LIFAMA

In this section, an analysis of the introduction of the HMAC and link database to the
SDN environment is presented.

Theorem 1. No key sharing required.

One weakness of the HMAC is compromising/revealing the key by/to an adversary. This
normally happens during the key-exchange process if it is not securely managed. For verification
of authenticity, the receiver needs the key in order to compute the MAC. Howeuver, there is no key
sharing, since the controller which sends out the LLDP packet is in turn charged with verification of
the same message upon reception from the switches.

Theorem 2. Security of HMAC.
HMAC has been proved to be a pseudo-random function (PRF), since the underlying com-
pression function is believed to be a PRF. A PRF is a function that generates an output from input
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variables that is indistinguishable from a truly random one [24]. To mitigate extension attacks
that may exist in ordinary hash functions, consider a message M, a key K concatenated and hashed
together by a hash function H(). Hash functions follow the Merkle-Damgard construction [25]. The
message M is broken down into equal blocks mg, m1,my, . .., my. The hash function is initialised
with an initialisation vector (IV), with the first block of message mq, and fed into a compression
function f. The output of mg becomes the input of my until my. At the output stage of my, if the
adversary knows the tag, he/she can add one or more extra block and compute the tag(s). Figure 9
shows the normal MAC generation that is susceptible to extension attacks. With this, an adversary
can compute the original message concatenated with the padding block. HMAC is not susceptible to
these attacks, since the internal hash using the IPAD is not exposed to the adversary due to the two
stages of hashing involved.

HMAC is considered a secure function with the following assumptions. Consider the number
of messages X and the Tag space T [26].

X << |T|'?
(o) (=) (w
™) Y, (")
e e S

Figure 9. Hash message generation.

The number of messages X tagged is less than the square root of the output tag space, T. As for
the message authentication, compromising the HMAC does not compromise traffic that has already
been authenticated. This very important to note, especially if the key is not dynamic. In this case,
a different key is used for every LLDP discovery, so cracking the key will not be important to the
attacker, hence ensuring a secure ecosystem with the SDN environment.

Theorem 3. The scheme provides LLDP authentication.

Packet authentication enables verification of the packet-in corresponding to a matching packet-
out sent by the controller. An adversary will have to compute a dynamically generated HMAC with
a dynamic key to be able to break this security feature.

Theorem 4. Link Database.

Creating a link database as a reference database adds an extra layer of security so that an
adversary would need to create a fabricated link by also injecting a false link into the PostgreSQL
database as well.

7. Experiments

This section shows a summary of the tools and environments that formed the basis of
our investigational assessment. A key program used for the experiments was Mininet [27],
a Linux-based network emulator. Mininet is a network emulator program used extensively
in SDN simulations with the ability to create virtual switches, hosts, controls and links.
Mininet can switch support for OpenFlow, a defacto protocol for SDNs, and it has the ability
to run code that can be run on real hardware, making the transition from the test bed to the
hardware environment easy. The controller used in this research was POX [28], an open-
source python-based SDN controller that provides rapid prototyping. The environment
was set up Mac OSX operating system running Oracle Virtual Box with Ubuntu 18.04 LTS
version (RAM: 3 GB, storage: 20 GB). We limited the speed of links in our experiments to
100 Mbps. Table 3 shows the experimental tool set used to generate the results in this study.
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Table 3. Experimental tool set.

Application Function
Mininet SDN Emulator
Oracle Virtualbox Virtualization Software
POX Controller
Ubuntu Operating System

Python Programming Language
PostgreSQL 12 Database

In our experiments, using the environment in Table 3, we simulated three types of
topologies. These were the linear, tree and custom topologies with varying numbers of
switches. The studied topologies, when implemented, presented different numbers of links
for the same numbers of switches. We therefore chose the three topologies for the purpose
of exploiting the diversity of possible link fabrication attacks in both simple and complex
networks. Generally, the linear topology presents a simpler topological structure compared
to the tree and custom structures. An existing LFA mitigation algorithm called SPV [8] was
also run on the three topologies to validate our proposed LiIFAMA.

For each topology, the number of switches was varied from 2 to 40 in the experiment.
The time whereat the first discovery packet was sent out and the time at which the last
discovery packet was received were recorded. These were used to calculate the discovery
time. For every switch topology, we first populated the database with a list of known links
to act as a reference database of known links for that topology. We ran three trials and
recorded the discovery times for each of those trials, which we later used to calculate the
average discovery time. To simulate and attack, we crafted LLDP packets using [23] a
packet generating tool and injected them into the environment.

Figure 10 shows the output of the controller after implementation of our discovery
algorithm. The discovery times are shown later. Due to the nature of the OpenFlow
protocol, an attacker can easily inject fabricated links within the network. For purposes
of visualising our experiment, as seen Figure 10, we prepared a three-switch topology
scenario where an LFA was initiated and mitigated.

In Figure 10, it is shown that an attacker injected a fabricated link from switch 3, port 1
into switch 1, port 1. Our discovery algorithm was able to detect that the fabricated link
actually had a false HMAC and was non-existent in the link database, hence returning
“Detected Fabricated link 00-00-00-00-00-03:1, 00-00-00-00-00-01:1". The fabricated link was
detected, and the controller never allowed one to be used. Another link from switch 1,
port 2 to switch 2, port 1 was also detected, but unlike the fabricated link, this link met the
criteria of a genuine link as per the description in LIFAMA. From this output it can be seen
that LIFAMA was successful in detecting fabricated links in SDN and blocking them from
being created.

root@pox:~# /home/jose/pox/pox.py topoDisc openflow.discovery

POX 0.5.0 (eel) / Copyright 2011-2014 James McCauley, et al

init over

INFO:core:POX 0.5.0 (eel) is up.

INFO:openflow.of_01:[00-00-00-00-00-03 2] connected

Discovery Packet Sent 22:01.350

Discovery Packet Sent 22:01.350

INFO:openflow.of_01:[00-00-00-00-00-01 1] connected

Discovery Packet Sent 22:01.352

Discovery Packet Sent 22:01.352

INFO:openflow.of_01:[00-00-00-00-00-02 3] connected

Discovery Packet Sent 22:01.353

Discoveryv Packet Sent 22:01.354

INFO:openflow.discovery:Detected Fabricated link 00-00-00-00-00-03 : 1, 00-00-00-00-00-01 : 1
INFO:openflow.discovery:Detected Fabricated link 00-00-00-00-00-01 : 1, 00-00-00-00-00-03 : 1
INFO:openflow.discovery:link detected: 00-00-00-00-00-01 : 2, 00-00-00-00-00-02 : 1

Link Discovered 22:04.868

INFO:openflow.discovery:link detected: 00-00-00-00-00-02 : 1, 00-00-00-00-00-01 : 2

Link Discovered 22:05.745

Figure 10. Fabricated link detection.
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8. Results
8.1. Performance Metrics

RFC 8456 provides generic methodologies for benchmarking OpenFlow-based SDN
controller performance [29]. More parameters to test SDN performance were highlighted
by [17], as they carried out an analysis of the discovery process in SDNs. One of the
performance benchmarking tests that could be carried out is network topology discovery
time, and since the modification is in the topology discovery mechanism, it was imperative
to find out how addition of the HMAC and a reference database affected the overall
topology discovery time.

The network topology discovery time (TDT) can be obtained by calculating the time
difference between the first OFPT-packet-out with an LLDP message received from the
controller (T,,1) and the last OFPT-packet-in with an LLDP message sent to the controller
(Tmn) when the comparison is successful, as shown in Equation (3).

TDTl - Tmn - iml (3)

Tun Time at which the last discovery message is received. T,,; Time at which the first
discovery message was sent out.

The discovery process was repeated for at least three (3) successful attempts and the
Average topology discovery time (TDTgy) calculated from Equation (4). A graph of the
average topology discovery time against number nodes was plotted for both linear and
tree topology discovery times. A graph of discovery time against the number of links was
also plotted.

TDTywg = (TDTy + TDTo + TDT3 + ...+ TDTy)/tn 4)

where ¢, is the total number of trials and TDT; is the discovery time after a single trial up
to n trials. TDT,yg is the average topology discovery time.

CPU utilisation is an important metric used to determine the performance of the
SDN. OFDP utilises the CPU to both generate the packet-out and process the packet-in.
Addition of the HMAC, which is a cryptographic algorithm, would increase the CPU load
as the number of links and switches increases. It is obvious that the number of packets
generated depends entirely on the number of switches and the ports in the active ports
the switches have. Our LiIFAMA, therefore, will naturally exhibit high CPU utilisation
because it involves using the HMAC and the database. Our analysis therefore dwells on
the discovery time and verification time.

From the graphs in Figures 11-13, it can be noted that the addition of HMAC and
a link database has a minimal effect on the discovery time of the network topology, as
the difference is about a few milliseconds or seconds for a larger number of nodes. We
further note that SPV has a higher discovery time, since at least two packets are required
for addition and verification of a single link, hence making it a viable solution to link
fabrication attacks.

Figures 11-13 include the standard deviation values, which range from 0.01 to 0.7 s,
showing very little variation from the average value of the discovery time for each discovery
approach. Discovery time increases with increase in number of nodes and switches. The
combination of HMAC and the database opens new avenues for using databases within
SDN environments. Based on the computational time required for the discovery, it was also
noted that the CPU usage was low, and memory consumption was mainly due to topology
creation, since Mininent creates an in-memory topology.
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8.2. Discussions

LiFAMA and SPV [8] have the fundamental similarity of both being active algorithms
for detecting and mitigating LFA. The major difference between LiFAMA and SPV is that
while LiFAMA does not allow creation of a fabricated link before it is discovered, SPV lets
the link get created before the probing packet is sent to verify it. For every link created, at
least one probing packet is sent out for the link verification. This increases the discovery
time for the topology, as more than one packet has to be sent for a particular link—i.e., the
packet-out from the controller and at least one probing packet. In the event that the probing
packet is dropped, an adversary may be able send traffic through the fabricated link. It
was also noted that the probing packet is authenticated using one-way hashing functions
that are susceptible to length extension attacks [30]. This difference makes LiIFAMA more
efficient and faster at detecting fabricated links, though a chance of the probing packet
being dropped exists and another packet will have to be resent later. SPV is implemented
outside the controller. It can plug into any controller, though this presents a security risk
and slows down the controller’s efficiency.

From the graphs in Figure 14, it can be noted that the link verification time increases
with increase in the number of links and devices. The verification times for all links in the
network were noted for the fat tree topology. From the results it was noted that for a low
number of devices, LIFAMA and SPV had quite close results, but as the number of devices
increased, the verification times for SPV and LiFAMA started differing. LIFAMA recorded
a lower verification time than SPV, making it more efficient for verifying large numbers of
devices and switches.

In Figure 14, at 40 switches, the verification time for LIFAMA is about 2 s more than
that of the conventional LLDP. The difference between the verification times for SPV and
conventional LLDP is high because the discovery packet in SPV is sent twice before a link is
marked as valid or not. It is also clear that in a simulated environment, the topology is run
in memory consuming resources. The controller uses less. This implies that the significant
difference when using a simulator will drastically be low when tested on a real platform.

LiFAMA was tested based on in-band control. In Sharma et al. [31], in-band control
was tested in the study, and the results strongly recommend in-band control. They proposed
a queuing model in which control traffic is served first, preventing competition for network
resources with the data traffic. Discovery traffic is control traffic, and in comparison, with
LiFAMA, queuing would help reduce the discovery time, especially with large networks.
With out-of-band implementation, the control channel is separate from the data traffic.
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8.3. Limitations of LIFAMA
The following are the few limitations LIFAMA presents.

*  Management of link database: Introducing a link database as a reference to known
links creates an administrative task of updating the database every time there must
be link addition or removal. The network administrator in this case is expected to
have control of this database to manage inserts, updates and deletions. To improve
its security, writes to this database should be independent of the HMAC verified link.
Therefore, it would not be a good idea to manage the link database based on links
with validated HMACs.

e LiFAMA has only been tested in a simulated environment for proof of concept. Phys-
ical environments, however, present more practical and real tests of the true per-
formance of LIFAMA. Topology creation in Mininent is an in-memory process that
may use up the random access memory (RAM) of the VM, which might increase the
discovery time due to lack of system memory, especially as the topology grows.

9. Conclusions

In this study, an algorithm called LIFAMA for mitigating link fabrication attacks in
SDN was proposed and implemented. The mitigation algorithm uses HMAC, a known-
links database, and a hashed key authentication mechanism. The results show that for the
same network design and configuration, the algorithm increased the discovery time by a
few milliseconds for a low number of switches, by about 0.2%, but increased the discovery
time with more devices by about 12% for the 1020 links in the tree topology. This is quite
negligible compared to the security added by the measure. Though the detection of the
fabricated link is performed at packet-in processing, it is almost instant. The proposed
measure is an active method that detects and stops the creation of fabricated links. The
introduction of the database creates a more dynamic reference and eases implementation of
our improvement. In future, we look forward to extending our algorithm to various SDN
controllers and carrying out more experiments in other real test beds. We also intend to
extend more SDN functionality in a relational database that makes extensions to services
easy for developers, since all logic is implemented in the database. We further intend to
experiment our LIFAMA in an out-of-band control-based SDN.
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