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Abstract: Sugarcane is an important plant, not only for its economic value but its ecological importance. An infestation of E.
Walker Lepidoptera pyralidae, which occurs naturally in wetland habitats and tall grasses, ravages the sugarcane stalk
reducing its value. The study proposes a novel model for formulating the dynamics of the E. walker population with
SIT. A mathematical analysis of the proposed governing equations representing the model has unique and positive
solutions. A basic reproduction number computed based n wild free equilibrium (WFE) points was found to be R0 < 1
indicating an eminent wipeout of the wild E. walker population under SIT. The local stability of the WFE indicated
that the established R0 was locally asymptotically stable and R0 < 1. The global stability showed that WFE is globally
asymptotically stable when R0 < 1. The numerical simulation revealed that the wild E. walker population under
Sterile Insect Technology (SIT) will be wiped out after more than 120 weeks, which is unrealistic, considering that the
sugarcane matures after approximately 78 weeks. Elasticity analysis of the model parameters based on R0 indicated
that a possible control lies in controlling the eggs laid and sex ratio. The effectiveness of the control is indicated in
the numerical simulation that showed that the population of the wild E. walker is wiped out after approximately 130
weeks. Future studies into the area need to refocus on the timelines to investigate other strategies to reduce the wild
E. walker population below the sugarcane maturity stage.
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1. Introduction

Sugarcane (Saccharum officinarum L.) is a tall grass of the Gramineae family has a stalk that consists of sections
approximately 13 cm in length, with each section comprising of a node and an internode [1]. The stalks have a diame-
ter of about 2 cm, and the cane plant has a height of up to 6 m with high, green leaves upwards and dead leaves on the
lower parts of the stalks. The node of the stalk has a bud from which a young plant emerges. Sugarcane does well in
tropical climates and fertile soils. However, an infestation of E. Walker Lepidoptera pyralidae, which occurs naturally
in wetland habitats and tall grasses, ravages the sugarcane stalk reducing the farmers’ income [2, 3].
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For a long period, E. Walker control methods have included chemical control, crop management, varietal resis-
tance, biological control [4] and, more recently, Sterile Insect Technique (SIT). The SIT method relies on releasing
sterilized male insects to the wild insect population. After mating with sterilized males, the wild females will lay eggs
that don’t hatch into larvae pests. The result is the subsequent suppression of the wild population. The extent to
which this is achieved mathematically has remained elusive. Numerous researchers have employed the differential
equations approaches to assume that the spread of insects and their management through SIT can be modelled via
ordinary differential equations (ODE) within the disease dynamic concept [5–8]. The current paper proposes a novel
model for formulating the dynamics of the E. walker population with SIT. The mathematical analysis is performed
with a focus on the feasibility of the model in real-life applications. The equilibrium points are determined, and their
stability analysis is performed. Numerical simulation is performed to estimate parameter values to depict the popula-
tion dynamics. Optimal control is also determined, and its existence is established. We also characterize the controls
based on Pontryagin’s maximum principle. Finally, a numerical simulation for the control is performed to establish
the effectiveness of the control in the population dynamics of E. walker.

2. The Model

2.1. The model formulation

The model presented in Figure 1 shows the population fertile male M f of E. Walker is increased by σ(1−α)
F f

K
where α is the primary sex ratio, σ is the the number of eggs laid per day on the subsequent population of the wild
pests, K is the egg carrying capacity of the wild fertile female F f . This population is reduced by natural deaths rate
µM . The population of F f is increased by rate of female eggs hatched per day σα and competition of mating between

wild male and released sterile male β
M f +Ms

. The population is decreased by natural deaths rate µF . The population of

sterile males is increased by the release rate r and decrease by natural deaths rate µMS .

Fig. 1. A model diagram representing the E. walker control where the eggs laid by wild female is controlled by releasing the sterile
male into the wild to compete in mating with wild male in order to reduce the population of both wild female and male. The wild
female mate with the sterile male to lay sterile eggs.

2.2. The governing equations

The system of equations representing based on the population growth on the Malthus’s model for the individual
compartments is given by;



54 A novel model for female population on the effects of African Stalk Borer on Saccharum officinarum L. under...

d M f

d t
= σ(1−α)

F f

K −µM M f (1)

dF f

d t
= σα

M f

M f +Ms

β
M f +Ms

−µF F f (2)

d Ms

d t
= r −µs MS (3)

The initial conditions governing the model is given by:

M f (0) = M 0
f > 0,F f (0) = F 0

f ≥ 0, & Ms (0) = M 0
s > 0 (4)

3. Well-posedness of the system

It is shown that the model represented by (1)-(3) has a unique, non-negative solution that exists and is bounded
and is feasible in real life.

If we let X (t ) = (
M f (t ),F f (t ), Ms (t )

)
and

f : X → M
′
f such that f = (

f1, f2, f3
)
, where

f1(X ) =σ(1−α)
F f

K −µM M f

f2(X ) =σα M f

M f +Ms

β
M f +Ms

−µF F f

f3(X ) = r −µs Ms .

(5)

So that we can write (1)-(3) as:

X
′ = f (X (t )); X (0) = (

M f0 ,F f0 , Ms0

)
. (6)

Theorem 3.1.
Suppose f (X (t )) as given by (6) and the initial condition X (0) = E = M f +F f + Ms > 0, is non-negative, then system
(1)-(3) has a unique solution that is non-negative and bounded.

Proof. fi are continuous functions and ∂ fi
∂X j

, 1 ≤ i , j ≤ 3 exist and are continuous functions such that f (X (t )) is

locally Lipschitz continuous. X (0) = E = M f +F f +Ms > 0, thus at least one compartment is non-empty. Therefore,
there exists a unique solution X (t ) of the system, defined in some time interval containing t = 0. Let t0 be the smallest
t such that M f (0) = 0 or F f (0) = 0 or Ms (0). By continuity of M f (t ), F f (t ), and Ms (t ), ∃ t∗ > t0 such that if M f (0) = 0,

then from (1) we get
d M f

d t = σ(1−α)
F f

K ≥ 0 ∀t ∈ [t0, t∗]. Thus, M f is increasing function on the time interval [t0, t∗],

=⇒ M f (t ) ≥ 0 ∀t ∈ [t0, t∗]. Similarly, from (2),
dF f

d t =σα M f

M f +Ms

β
M f +Ms

≥ 0 ∀t ∈ [t0, t∗]. Thus, F f is increasing function

on the time interval [t0, t∗], =⇒ F f (t ) ≥ 0 ∀t ∈ [t0, t∗]. Similarly, if Ms (t0) = 0, then from (3) we obtain d Ms
d t = r ≥ 0 =⇒

Ms (t ) ≥ 0 ∀∈ [t0, t∗]. Thus, E(0) = M f (0)+F f (0)+Ms (0) ≥ 0, thus, a solution to the system is non-negative. We use the
dissipativity condition of theorem 2.3.6 of [9] to establish the a unique solution exist globally.

f (X ).X = (
f1, f2, f3

)
.
(
M f ,F f , Ms

)
= M f f1 +F f f2 +Ms f3

≤ M f σ(1−α)
F f

K −µM M 2
f +σα

F f M f

M f +Ms

β
M f +Ms

−µF F 2
f + r Ms −µs M 2

s .

(7)

Thus a unique solution X (t ) exists defined for all t ≥ 0; such that M f ≤ E , F f ≥ E , and Ms ≥ E : where E = M f +F f +
Ms .
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4. Equilibrium points

The equilibrium points is where there is no change in the variables with time, that is
d M f

d t = dF f

d t = d Ms
d t = 0. We use

(3) to obtain

Ms0 =
r

µs
(8)

We use (8) into (2) to get

F f0 =
M∗

f0
βσ(1−α)

µF
(9)

We use (9) to obtain

M f0 = 0 (10)

We substitute (10) into (9) to get

F f0 = 0 (11)

Thus the case of M f0 = 0,F f0 = 0 and Ms0 gives the wild free equilibrium (WFE) X0 =
(
0,0, r

µS

)
∈ Ω{(M f ,F f , Ms ) ∈

R2+|M f +F f +Ms | = E .

4.1. The Control Reproduction Number

We use the next generation matrix to compute the basic reproduction number. We consider M f and F f . If we let

x = (M f ,F f )T , thus we set F =
(
FM f ,FF f

)
and V =

(
VM f ,VF f

)
, where F j , j = M f ,F f is the rate of appearance of new

wild population in compartment j . V j = V −
j −V +

j , where V −
j is the rate of transfer out of compartment j and V +

j is the

rate of transfer into compartment j , Thus, we have

F =
(

σα
F f

K

σα
M f

M f +Ms

bet a
M f +Ms

)
. (12)

V =
(
µM M f

µF F f

)
. (13)

We assume that X0 is the WFE for the model, we have

F =
[
∂Fi

∂x j
(X0)

]
=

(
0 σα

K
ασβµ2

S
r 2 0

)
. (14)

V =
[
∂Vi

∂x j
(X0)

]
=

(
µM 0

0 µF

)
. (15)

we compute the inverse of V gives

V −1 =
(

1
µM

0

0 1
µF

)
. (16)

We use (16) and (15) to obtain

FV −1 =
(

0 ασ
KµF

αβµ2
Sσ

µM r 2 0

)
. (17)

The control reproduction number R0 is given by the spectral radius of FV −1, thus

R0 = αµsσ

r

√
β

KµMµF
(18)

The control reproduction number is the expected number of wild population produced by a single fertile mating
in a completely fertile environment.
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4.2. Stability of WFE

4.2.1. Local Stability of WFE

Theorem 4.1.
Given that X0 =

(
0,0, r

µS

)
is a WFE for the model, then X0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. We follow Theorem 2 in [10] as follows;

J =
 −µM

ασ
K 0

βσ(1−α) −µF 0
0 0 −µS

 . (19)

The eigenvalues of J is given by

λi =
 −µS

−µF
2 − µM

2 −Πλ
Πλ− µM

2 − µF
2

 (20)

where Πλ =
(
−4βα2σ2+4βασ2+Kµ2

F −2KµFµM+Kµ2
M

4K

) 1
2

. λi are real parts, hence R0 is locally asymptotically stable and

R0 < 1.

4.2.2. The global stability of WFE

Theorem 4.2.
If R0 ≥ 1, the WFE of system (1)-(3) is globally asymptotically stable in Ω = {M f ,F f , Ms } ∈ R3+|M f ≥ 0,F f ≥ 0, Ms ≥
0, M f +F f +Ms = E . If 0 > 1, the WFE is unstable.

Proof. We use the matrix theoretic method by [11] based on the dynamics of the E. walker compartment population
model as;

d x

d t
=F (x, y)−V (x, y) (21)

where x = (M f ,F f )T , y = Ms , and F and V are given by (12) and (13), respectively. We can re-write the dynamics of
the x (wild compartments) as

d x

d t
= (F −V )x − f (x, y) (22)

where F and V are given by (14) and (15) respectively, and

f (x, y) = (F −V )x −F (x, y)+V (x, y)

=
(

0
M f αβµ

2
Sσ

r 2 − M f αβσ

(M f +Ms )2

)
.

(23)

and

V −1F =
(

0 ασ
(KµM )

αβµ2
Sσ

(µF r 2)
0

)
. (24)

Eq. (23) indicate that f (x, y) ≥ 0 in Ω⊃ R3+, F ≥ 0, and V −1 ≥ 0. V −1F is reducible thus conclusion of Theorem 2.2
of [11]. Therefore, we use Theorem 2.1 of [11] to construct the Lyapunov function for the system (1)-(3).

Suppose we let wT = (w1, w2) be the left eigenvector of V −1F corresponding to ρ(FV −1) = ρ(V −1F ) =R0. Thus, we
have

(w1, w2)V −1F =R0(w1, w2) (25)
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We substitute the value of R0 from (18) and simplify to get

w1 =
K

1
2β

1
2µSµ

1
2
M w2

µ
1
2
F r

. (26)

Suppose we assume w2 = z, were z is a parameter. If we let z = 1, then (w1, w2) = (
K

1
2 β

1
2 µSµ

1
2
M w2

µ
1
2
F r

,1), Thus, function

Q is given by

Q = wT V −1x = F f

µF
+ K

1
2 M f β

1
2µs w2

µ
1
2
F µ

1
2
M r

(27)

We differentiate Q along the solution of the (1)-(3) to obtain;

Q
′ = (R0 −1)wT x −wT V −1 f (x, y)

= (R0 −1)
(
F f + K

1
2 M f β

1
2 µSµ

1
2
M

µ
1
2
F r

)
+ασβM f

µF

[
1

(M f +Ms )2 − µ2
S

r 2

] . (28)

If R0 < 1, the Q
′ ≤ 0 in Ω. Thus, Q is the Lyapunov function for the system (1)-(3). We use LaSalle’s invariance

principle [12] to prove the global stability of WFE as follows: For Q
′ = 0 =⇒

ασβM f

µF

[
µ2

S
r 2 − 1

(M f +Ms )2

]
= (R0 −1)

(
F f + K

1
2 M f β

1
2 µSµ

1
2
M

µ
1
2
F r

) (29)

Since R0 ≤ 1, we get

ασβ

µF

[µ2
S M f

r 2 − M f

(M f +Ms )2

]
≤ 0. (30)

Since ασβ
µF

> 0, we have

[
µ2

S M f

r 2 − M f

(M f +Ms )2

]
≤ 0

=⇒ µ2
S

r 2 ≤ 1
(M f +Ms )2

=⇒ µ2
S

r 2 − 1
(M f +Ms )2 ≤ 0

=⇒ E ≤ (M f +Ms )

(31)

The results indicate that E ≤ M f , which implies that E = Ms +M f , implying that F f = 0 since M f +F f +Ms = E .

Thus, (0,0, r
µS

) is the only invariant set inΩ satifying that Q
′ = 0 when R0 < 1. Thus, by LaSalle’s invariance principle,

the WFE is globally asymptotically stable inΩwhen R0 < 1 .
When R0 = 1, then the first term of (28) becomes zero, and Q

′ ≤ 0 inΩ. Q
′ = 0 =⇒

Q
′ = −wT V −1 f (x, y) = 0

ασβM f

µF

[
1

(M f +Ms )2 − µ2
S

r 2

]
= 0

=⇒
[

M f

(M f +Ms )2 − µ2
S M f

r 2

]
= 0

=⇒ 1
(M f +Ms )2 = µ2

S
r 2

. (32)

Similarly, the results indicate that E ≤ M f , which implies that E = Ms +M f , implies that F f = 0 since M f +F f +Ms =
E . Thus, (0,0, r

µS
) is the only invariant set inΩ satifying that Q

′ = 0 when R0 = 1. Thus, by LaSalle’s invariance principle,

the WFE is globally asymptotically stable in Ω when R0 = 1 . Therefore, from (28) and (32) R0 > 1, Q
′ > 0 in the

neighborhood of X0. This makes X0 unstable. For R0 > 1, the first term of (28) is positive hence Q
′ > 0. Therefore, we

use continuity to show that Q
′

remains positive in a small neighborhood of X0.
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When R0 ≤ 1, the global asymptotic stability of the WFE rules out the existence of backward bifurcation. We use
the uniform persistence results based on [13] and argument in proof of proposition 3.3 of [14] we can show that when
R0 > 1 instability of X0 implies that the system is uniformly persistent. This shows that uniform persistence and
positive invariance of the compact set inΩ implies the existence of at least one positive equilibrium.

5. Numerical Simulations of the model system

5.1. Sensitivity analysis of parameters

We ascertain the contribution of each parameter in the model by carrying out the as sensitivity analysis in the
control reproduction number R0 based on the values listed in Table 1.

5.1.1. Parameter Estimation

The parameter values are estimated and presented in Table 1. Our simulations are based on the these values.

Table 1. Estimates of parameter values

Parameter Values Source
β the characteristic competition parameter averages over all the stages 0.357 Estimate
α the primary sex ratio 0.5 Estimate
σ the number of eggs laid per day for the E. Walker moth 4.725 Estimate
µM f mortality rate of fertile male 0.04 Estimate
µF f mortality rate for fertile female 0.03 Estimate
µs mortality rate for sterile male 0.04 Estimate
r Recruitment rate of sterile male 3.8424×103 Estimate

5.1.2. Elasticity indices

The elasticity index of a parameter p is given by p∂R0
R0∂p . Therefore, its a measure of the relative change in R0 to the

relative change in p. A parameter with the largest elasticity magnitude has the greatest effect on R0 hence the spread
of wild E. walker population. Table 2 show elasticity index calculated based on the parameter values in Table 1.

Table 2. Elasticity Indices based on parameters in R0

Parameter Elasticity Index
α 1
β 1/2
µS 1
σ 1
K -1/2
µF -1/2
µM -1/2

r -1

The elasticity index is summarized in Figure 2

5.1.3. Numerical simulations for the model analysis

We present a numerical simulation for the system (1)-(3) based on parameter values in Table 1. The control repro-
duction number R0 in (18) is obtained as R0 = 0.0021 < 1. This implies that the wild population will be wiped out in

the long-run. Figures 3 that the trajectories approach WFE
(
M∗

f ,F∗
f , M∗

s

)
≈

(
0,0,

[
r
µs

= 2500
])

.

Figure 3 indicate the population of wild (fertile) males M f , wild (fertile) females F f decreases while that of sterile
male Ms increases over time for a period of 128 weeks before M f reaches zero. The population of F f stabilizes before
reaching zero and remains constant after 120 weeks. The figure shows that this growth is slow, and would be detrimen-
tal to the sugarcane considering the maturity of sugarcane is around 18 months (78 weeks). This implies that by the
time the Ms population stabilizes, the pest would have ravaged the sugarcane leaving farmers with no yields. Thus, a
need for optimal control strategy to expedite the reduction of the population of M f , and F f is inevitable to reduce the
time before stabilization of the population of the Ms .
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Fig. 2. Elasticity index of parameters in Table 2.

Fig. 3. The number of wild E. walker population in system (1) -(3) using parameter values in Table 1 with M f0
= 3.0739∗10,

F f0
= 3.0739∗103, and Ms0 = 0 and R0 = 0.0021. The approximated equilibrium values are

(
M∗

f ,F∗
f , M∗

s

)
≈ (0,0,2500).

5.2. Sensitivity Analysis

Fig. 4. Simulating the sensitivity of parameters α,µs ,µM f ,σ,β,µF f ,r with respect to RC . The graph indicate that σ (the number
of eggs laid per day for the E. Walker moth) is the most sensitive parameter.

Figure 2 shows that σ,r,α is the most sensitive parameter in controlling the population of M f ,F f , Ms . Therefore, a
sensitivity analysis is set based on reducing σ.

6. Optimal Control applied to wild E. walker model

We extend the model (1)-(3) to reduce the number of eggs laid per day can reduce the population of wild E. walker
population. No specific strategy in literature is recommended to wipe out the people of the E. walker. Thus, these are
attempts that, speculatively, could reduce the population.
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6.1. Introduction of the controls

From Table 2 and Figure 2 shows that σ,r,α has the greatest elasticity indices on R0. Thus can be easily be used to
control the population of M f ,F f , Ms . Therefore, we consider σ,r,α in reducing the population of wild E. walker.

6.1.1. Eggs laid

Let g ∈ [0,1] be a time-dependent and Lebesgue measurable control representing a strategy to reduce the eggs laid
per day, reducing the number of eggs hatched. The effect may include the timely release of the sterile males so that
by the time the fertile males are mature to mate, the sterile males will have mated with the fertile female. The set of
admissible eggs laid control is

G = {g (t ) : [0,T ] → [0,1] and g is Lebesgue measurable}

6.1.2. Sex ratio

Let sr ∈ [0,1] be a time-dependent and Lebesgue measurable control representing a strategy to reduce the sex ratio,
reducing the sex ratio between fertile male and female thus, increasing the number of sterile eggs laid. The effect may
include the earlier release of the sterile males so that by the time the fertile males are mature to mate, the sterile males
will have mated with the fertile female, most eggs laid are sterile. The set of admissible eggs laid control is

sr = {sr (t ) : [0,T ] → [0,1] and sr is Lebesgue measurable}

The controls can be denoted as u = (g , sr ) and the set of admissible controls U =G ×SR .

6.2. The extended mathematical model

The portion of the fertile males who are affected by the control are

d M f

d t
= (1− g )σ(1− (1− sr )α)

F f

K
−µM M f (33)

dF f

d t
= (1− g )σ(1− sr )α

M f

M f +Ms

β

M f +Ms
−µF F f (34)

d Ms

d t
= r −µs MS (35)

With initial conditions

M f (0) = M f0 ,F f (0) = F f0 , Ms (0) = Ms0 . (36)

The success of intervention is measured based on its ability to reduce the population growth of wild population
of E. walker. A possible cost include the cost of new or increased release of the sterile male. Therefore, the control
u = (g , sr ) is considered optimal if it minimizes the objective function defined as

J = ∫ T
0

(
A1

[
(1− g )σ(1− sr )α

M f

M f +Ms

β
M f +Ms

]
+A2g 2 + A3s2

r

)
d t

(37)

where A1 is the cost of timely release of sterile males, A2 = A3 is the cost of implementing the timely release of
sterile males per unit time. A1, A2 and A3 are the balancing coefficients transforming the integrand into cost per time

unit. (A1

[
(1− g )σ(1− sr )α

M f

M f +Ms

β
M f +Ms

]
respresent the cost of timely release. We can thus state the optimal control

as follows:

min
u∈U

J (u) (38)

subject to (33)-(35) and initial conditions (36).
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6.3. Existence of optimal control

Theorem 6.1.
There exists an optimal control u∗ and the corresponding solution

(
M∗

f ,F∗
f , M∗

s

)
to the initial value problem given by

(36) that minimizes the objective function given by (37) on U.

Proof. The initial value problem (33) -(35) can be written as

X
′ = f (t , X ,u) (39)

with X (0) = X0. (40)

It is established that the existence of optimal control via results of Theorem 4.1 of [15] are met based on the following
conditions

1. There exist C1 and C2 such that

a | f (t , X ,u)| ≤C1(1+X1) and

b | f (t , X1,u)− f (t , X2,u| ≤C2|X1 − X2|, for all t ≥ 0, X1, X2 ∈ {(M f ,F f , Ms ) ∈ R3+|M f +F f +Ms = E }, and u U ,
where U = {u = (g , sr ) : O ≤ g , sr ≤ 1}

2. The set of control and corresponding state variables are non-empty (increasing or decreasing functions).

3. The control set U is convex and closed, f (t , X ,u) = η(t , X )+$(t , X )u and M is convex on U , where M =
(

A1

[
(1−

g )σ(1− sr )α
M f

M f +Ms

β
M f +Ms

]
+ A2g 2 + A3s2

r

)
is the integrand in (37).

4. There exist C3 > 0, C4 > 1, C5 ≥ 0, such that

M(t , X ,u) ≥C3|u|C4 −C5

Since f is C 1, conditions 1(a) and 1(b) are implied by suitable bounds on partial derivatives of f and on f (t ,0,0).
Since f is continuous and bounded on finite time interval, Theorem 9.2.1 in [16] guarantees that we have at least
one local solution. The set U = {(g , s − r ) : g ∈ [0,1] and sr ∈ [0,1]} is closed. By deifinition, the set Q = {g : g ∈
[0,1] is Lebesgue measurable is convex if g2, g2 ∈Q and ϕ1 ∈ [0,1] implying that

[
(1−ϕ1)g1 +ϕ1g2

]
∈Q

(1−ϕ1)g1 +ϕ1g2 ≥ 0 since ϕ1, g1, g2 ∈ [0,1],

and

(1−ϕ1)g1 +ϕ1g2 ≥ 0(1−ϕ1)+ϕ1 since ϕ1, g1, g2 ≤ 1

= 1

Therefore, (1−ϕ1)g1+ϕ1g2 lies in Q implies that Q is convex, thus G is convex since according to [17] the Cartesian
of convex set is convex; U =G ×SR is convex set. The function f is linear in each control variable g and sr , thus it can
be written as f (t , X ,u) = η(t , X )+ϕ(t , X )u. M is convext on U since it is quadratic in u and the constant A2 and A3 are
positive.

6.4. Characterization of the controls

We use Pontryagin’s principle state in [18] in Pg. (84-86) to find the best possible control for the system (33)-(35).
We define the Hamiltonian H as follows;

H(X ,u, p) = p.( f (t , X ,u)+L(t , X ,u)
= p1 f1 +p2 f2 +p3 f3 +L

= p1

[
(1− g )σ(1− (1− sr )α)

F f

K −µM M f

]
+ p2

[
(1− g )σ(1− sr )α

M f

M f +Ms

β
M f +Ms

−µF F f

]
+ p3

[
r −µs MS

]
+

(
A1

[
(1− g )σ(1− sr )α

M f

M f +Ms

β
M f +Ms

]
+A2g 2 + A3s2

r

)
(41)

where p = (p1, p2,P3) and p1, p2,P3 are adjoint variables for the state variables M f ,F f , Ms .
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Theorem 6.2.
Given an optimal solution (X ∗,u∗) of the control problem (38), there exist p1, p2 and P3, a solution set to the adjoint
system

ṗ1 = − ∂H
∂M f

=µM p1 + αβσ(g−1)(sr −1)
(M f +Ms )2 Σ1

ṗ2 = − ∂H
∂F f

=µF p2 + βp1σ(g−1)(α(sr −1)+1)
K

ṗ3 = − ∂H
∂Ms

=µS p3 +Σ2

[
A1 +p2

] (42)

where Σ1 =
[

2A1M f

M f +Ms
+ p2(M f −Ms )

M f +Ms
− A1

]
,

Σ2 = 2M f αβσ(g−1)(sr −1)

(M f +Ms )3

with transversality condition

p1(T ) = 0, p2(T ) = 0, p3(T ) = 0 such that u∗ = minu∈U H(X , p,u), t ∈ [0,T ]. Furthermore, the controls can be char-
acterised as

g∗ = min

(
1,max

(
0,
βσ

2A2

[ M f (1− sr )

(M f +Ms )2

(
A1 +αp2

)
+Σ3

]))

where Σ3 = F f p1(α(sr −1)+1)
K

and

s∗r = min

(
1,max

(
0,

αβσ(g −1)Σ4

2A3K (M f +Ms )2

))
where
Σ4 = (F f M 2

f p1 −K M f p2 − A1K M f +F f M 2
s p1 +2F f M f Ms p1)

Proof. The optimal control is derived from the optimality condition ∂H
∂u |u∗ = 0.

∂H
∂g

∣∣∣
g∗ = 0

=⇒ g∗ = βσ
2A2

[
M f (1−sr )

(M f +Ms )2

(
A1 +αp2

)
+Σ3

] (43)

∂H
∂sr

∣∣∣
sr∗

= 0

=⇒ s∗r = αβσ(g−1)Σ4

2A3K (M f +Ms )2

(44)

We consider the properties of the optimal control space to get;

g∗ =


0, if βσ

2A2

[
ΠΣ+Σ3

]
≤ 0,

βσ
2A2

[
ΠΣ+Σ3

]
, if 0 < βσ

2A2

[
ΠΣ+Σ3

]
< 1,

1, if βσ
2A2

[
ΠΣ+Σ3

]
≥ 1.

(45)

whereΠΣ = M f (1−sr )

(M f +Ms )2

(
A1 +αp2

)
. Hence g∗ can be characterized as

g∗ = min
(
1,max

(
0, βσ2A2

[
ΠΣ+Σ3

]))
.

s∗r can also be characterized as

s∗r = min
(
1,max

(
0, αβσ(g−1)Σ4

2A3K (M f +Ms )2

))
.

Additionally, we note from (43) and (44) that ∂2 H
∂g 2

∣∣∣g∗ = 2A2 > 0 and ∂2 H
∂s2

r

∣∣∣s∗r = 2A3 > 0. therefore, A2 and A3 are pos-

itive constants introduced in (37), which indicate that s u∗ = (
g∗, s∗r

)
minimizes the Hamiltonian function H(X , p,u).
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Fig. 5. Simulating the population of M f and M f c for the entire period understudy before and after optimal control strategy,
respectively.

7. Numerical Simulation for the control

A simulation of the extended (33) -(35) to show the effects of the optimal control strategy is presented in the Figures
5 based on the parameter values given in Table 1. A comparison is made of the population of the E. walker in each
compartment with and without optimal control.

In Figure 5 a decrease in fertile the eggs and sex ratio by 60% reduces the population of M f , F f and Ms by an
equivalent proportion. A comparison between M f , F f and Ms in the presence of control |c shows that the trajectories
for M f , and F f steeply falls towards zero faster compared to in the absence of optimal control. The trajectories take
shorter time to reach zero in the presence of optimal control compared to in the absence.

Fig. 6. Simulation of weekly cost of timely release in order to reduce the fertile eggs and sex ratio.

Figure 6 indicates that between week 1 and week 10, the cost increases by 1% and then gradually curves towards
week 40. Between week 1o and week 40, the cost increases by 0.4%. This indicates that the cost of implementing the
control is very small compared to the damage the E. walker pest can bring to sugarcane farmers.

Figure 7 indicates that the intervention reduces the egg population throughout the study period, explaining why
there is a sharp drop in the population of fertile males and females in Figure 5 during the control.

Similarly, Figure 8 indicates that the intervention reduces the sex ratio between the fertile male and female through-
out the study period, explaining why there is a sharp drop in the population of fertile males and females in Figure 5
during the control.

Figures 6-8 explains the effectiveness of the control and the cost of implementing the control. The figures suggest
that the cost is very small; thus, such interventions could be feasible in real life.

8. Conclusion

The study proposes a novel model for formulating the dynamics of the E. walker population with SIT. The model
proposed consists of four compartments, with only three active compartments. The proposed governing equations
were found to be feasible for application in real-life; that is, the solutions to the equations exist and unique and posi-
tive. The model equations had only wild free equilibrium (WFE) points.
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Fig. 7. Numerical simulating the effort of reducing fertile eggs.

Fig. 8. Numerical simulating the effort of reducing sex ratio of fertile male and female.

The basic reproductive number R0 was obtained to be less than 1. This indicated that the wild E. walker population
under SIT will wipe out after some time. However, the question lingered about the duration before it is wiped out. The
local stability of the WFE indicated that the established R0 was locally asymptotically stable and R0 < 1. The global
stability of WFE via the matrix theoretic method showed that WFE is globally asymptotically stable when R0 < 1.

The numerical simulation answered the question of the duration before the wild population is wiped out. The
simulation revealed that the wild E. walker population under SIT will be wiped out after more than 200 weeks. This
is unrealistic, considering that the sugarcane matures after approximately 78 weeks. This indicated a need for an
optimal control strategy to expedite the ’wipe-out’. Elasticity analysis of the model parameters based on R0 indicated
that a possible control lies in controlling the eggs laid and sex ratio. An extended mathematical control based on eggs
laid and sex ratio existed, and the approach can minimize its Hamiltonian function.

The numerical simulation showed that the population of the wild E. walker is wiped out after approximately 130
weeks, an indication of the effect of the control. However, this still needs to be satisfactory, necessitating future studies
and a sign of research value into the concept. A simulation of the objective cost function indicated an increase in
the cost within the first few weeks, followed by an almost flat curve. This indicates that the cost of implementing
the control only increases at the onset of the application and then flattens. This shows that the proposed control is
achievable and will support the farmers’ economics. A simulation of the efforts to reduce the eggs and increases the
sex ratio between sterile male and fertile female was also effective due to the growth of both curves. Future studies
into the area need to refocus on the timelines to investigate other strategies to reduce the wild E. walker population
below the sugarcane maturity stage.
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