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Abstract---Renewable Energy Sources micro-grids experience 
operational challenges due the unpredictable weather patterns, 
requiring continuous demand control schemes, which are 
detrimental to both customers and the micro-grid operator. 
Optimal unit commitment plans coupled with a synthetic inertia 
system, that is, distributed renewable energy storage (DRES), are 
considered to lower power imbalances and thus contributing to 
frequency transient stability. This research models a renewable 
energy micro-grid with solar PV, wind turbine, hydro and a 
geothermal power plant. The transient stability study during 
times of severe power imbalances shows the micro-grid is unstable 
during such a time. Particle swarm optimization is developed to 
commit the units in an optimal scheme that considers load flow 
power losses and DRES in a multi-objective function. This 
improves the control and operation of the micro-grid, minimizing 
frequency fluctuations caused by power imbalance, at times of 
severe shortage of generation from intermittent renewable 
sources.  

Index Terms---coherent swing, rotor angle, transient stability, 
islanded micro-grid, renewable energy storage

I. INTRODUCTION 

Climate change campaign in different countries has led to 
development of numerous renewable energy micro-grids and thermal 
power plants shut down to lower carbon footprints and secure a clean 
environment for humanity. However, these developments come at a cost, 
since renewable energy grids depend on weather patterns that are 
intermittent and unpredictable. Frequency and voltage collapse in entirely 
renewable energy grids are therefore prevalent [1].

These challenges require compensation measures and beyond certain 
limits measures of last resort such as load shedding are deployed, hurting 
the economic benefit of both consumers and suppliers of the electricity. 
Optimal power harvesting, unit commitment schemes, least losses and 
distributed renewable energy storage systems, that closely assumes the 
load profiling, developed in this study, are necessary to ensure least 
amounts of loads are disconnected from micro-grid.  

Intelligent techniques such as particle swarm optimization, genetic 
algorithm and artificial neural networks can be utilized to optimize 
dispatch and unit commitment, which reduces the amount of power 
imbalance, and hence sustaining loads that would otherwise have been 
disconnected from the network [2] [3] Advanced dynamic equivalency 
modeling techniques for coherent swing systems reduce the multi-
objective function complexity and thus lowering computational time.  

Primarily, this work involved a wide range of literature review, 
simulations in MATLAB code and results obtained indicate severe 
frequency collapse in the transient stability swing curve, which reduces 
with reduction of power imbalance on an optimized unit commitment,
load flow and DRES micro-grid network. Key contributions addressed in 

this research include minimal power loss micro-grid modeling, power 
imbalance/ probable extra power outages reduction/ stabilization through 
DRES and recovery times thereof. 

II. LITERATURE REVIEW 

80% of the Kenyan national electricity demand is supplied by 
renewable energy generations such as hydro, geothermal, wind and solar 
making the power system vulnerable to unpredictable weather patterns. 
Reserve capacity at 35% ensures restoration within the specified time 
limits by the energy regulatory authority [4]. This setup informs selection 
of generation sources for the micro-grid model in this study.   

[5] With interconnection to East Africa Power Pool and development 
of larger solar farms through the solar access project, the challenges are 
bound to soar higher even as the government stretches the high loss 
distribution network to last mile connections.  

[6]Using scenario based method, Peter Moses Musau et al 2017, 
carried out simulations of   multi-objective function with storage systems 
cost and frequency fluctuations as the key effects of power imbalances. 
This included a case study in which 180MW hyro-power generator 
tripping caused long hours of blackout before restoration of the network. 

Rate of frequency changes and input frequency parameters were 
utilized for setting load shedding relays in [7], using particle swarm 
optimization for the computation of the parameters in the proposed model. 
Uncertainty in the setting of the system was solved by a fuzzy logic 
system model attaining least load disconnection for optimal operation at 
the standard frequency. 

In [8] a model wind farm whose base load is carried on a diesel 
generator was investigated for under frequency collapse in which genetic 
algorithm in hierarchical forms were used to provide weighting factors, in 
largest peak loads and severe contingency, where an iterative process 
appending the fitness function, checking the problem constraints after 
population initialization, individual encoding, cross-over and mutation 
was simulated in the PSCAD software resulting in a more reliable
solution, as compared to traditional methods. 

Testing and validation of a hardware in the loop algorithm for 
predictive under-frequency instability was developed, providing a 
preventive measure to frequency collapse of micro-grids that are highly 
penetrated by the renewable energy sources [9]

In [10], fast-acting distributed energy storage system (DESS) to lower 
extra power outages in a case study of Guadeloupe electrical island in 
France is studied. The results show that DESS possess synthetic inertia 
that enhances frequency stability of the island, however, it failed to 
address voltage ride-through, forecast error and variability nature of 
renewable sources. 

In [11], a multi-period load flows whose accuracy is higher and 
convergence time short, is studied by building a surrogate model using a 
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combination of Latin hypercube sampling, Kriging and polynomial 
regression. The developed technique is more efficient when compared to 
voltage linearization or time sampling, with ten minutes power losses, bus 
currents and voltage profiles being computed within satisfactory time. 

III. PROBLEM FORMULATION 
a) Micro-Grid Model: Wind Turbines Generation 

The output of wind turbine generation system is given in equation 
(1), explicitly defining MW output of the system as a function of velocity, 
turbine diameter and Euler/ power co-efficient 

.

In this equation, β= pitch angle of the turbine blade, Cp= power 

coefficient, V= measured wind velocity, R= radius of rotor, ρ= density of 

air flow, ωR / v = tip velocity ratio with angular speed of rotor as ω.

b) Micro-Grid Model: Geo-Thermal Generation: 

Equation (2) gives the specific work output for a geothermal 
generation system, where Whpt = turbine pressure upper limit, Wlpt= 
lower limit output power, w =turbine specific work output 

c) Micro-Grid Model: Mini Hydro Power Plant 

The real power output from a hydropower plant is characterized by 
equation (3), where f is a constant of conversion from ft pounds to 
kilowatts, Q is the volumetric flux release from all sources,  is the 
elevation angle of the reservoir, H= net head, pi= power generated from 
the plant,  = specific density of water and = efficiency.

d) Micro-Grid Model: Solar PV Farm Generation 

Solar PV system power generation is characterized by  

In which, Hag= solar irrandiance, Epv = Kwh output, Gag= gloabal 
radiation in per kW, Pnom= nameplate rating for nominal power, Rs=
resistance in series arrangement, Ipv= output current, Vph= volltage at the 
termianl of the PV panel and Iph = solar panel current at output termianl 

e) Objective Function 

The underfrequency transient stability probem is formulated as shown 
in equation (5), in which NL= network losses, UCFF = Unit Commitment 
plan based Frequency Fluactions as a result of power imbalance and 
CRES is the cost of renewable energy storage. Each of these factors 
possess a weight , that is a range of a random value between 0 to 1, that 
is depended on extend to which the individual factor affects recovery of 
the system stability.Time sampling at intervals of 10 seconds is considered 
for evaluation of this function, to check for violations in frequency 
fluctuations. 

Network losses (NL) contribute to power imbalances, widening the 
gap between the generation and the demand, thus contributing to network 
instability. These losses are obtained from the multi-period load flow 
equation (6), in which the symbols carry their usual meaning in a load 
flow study 

Unit Commitment Frequency Fluctuations are derived from swing 
equation, as shown in equation (7), considering RES commitment plan for 
the outputs of equations (1 to 4). A renewable energy sources commitment 
plan, whose Pmn ≠ Pen, contributes to network instability. 

Where LHS = power imbalance for commited N units, with 
mechanical power Pmn and demand Pen. The RHS gives the frequency 
fluctuations resulting from the power imbalance, considering rate of 

change of frequency  and inertia constant , in which f0 = standard 

frequency. 

Distributed Renewable Energy Storage (DRES) formulation is 
illustrated in equation (8), considering charging time (T), storage system 
rating Pgt and total energy (E) available during positive power imbalance 
of the renewable energy source generation i.e. when available mechanical 
power is greater than demand (Pmn ≥ Pen) 

IV. METHODOLOGY: PARTICLE SWARM 
OPTIMIZATION ALGORITHM 

a) Justification and Mapping of problem formulation to PSO 
algorithm 

Selection of this method ensures minimum number of iterations is 
constituted to achieve the convergence criterion for the optimum under 
frequency commitment of the units, for minimal power loss, maximum 
renewable energy storage and least power imbalances that correspond to 
minimal frequency fluctuations. When applied to deficit contingencies and 
losses for medium, small and large systems, PSO adapts well with the 
system dynamics. Table 1.0 illustrates mapping of the problem 
formulation of equation 5, into the PSO algorithm. 

Table 1.0 Problem –Method Mapping  

No. PSO Parameters Prob. Formulation

1. Fittness Function Equation (5)

2. inertia weight 0.4

3. acceleration coefficient 0.2

4. Population 1000 Particles

5. No. of Iterations 200
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6. Constraints E, Pm, Pe and 

b) Optimization Algorithm Pseudo code  

PSO algorithm in steps as utilized in optimization of the objective 
function given in equation (5) is outlined as follows; 

1. Initialization of population (size of population, swarm and 
individual acceleration constants, number of partitions, 
partition variables and solutions etc.) 

2. Fitness function evaluation for search agents 
3. Application of PSO on the population 
4. Partitioning of the whole population in Sub partitions/ sub-

populations 
5. Update the global best and individual best positions and 

iterate until the convergence criteria is met 

V. RESULTS 
a) Algorithm calculation time, Convergence and  response 

times 

Expected response time is highly dependent on the size of a disturbance/ 
power imbalance that micro-grid is recovering from. For extreme faults, 
causing frequency fluctuations such that f>51.50 or f<47.75, where f= 
operational frequency, frequency response is expected in 20 seconds or 
less [12]. Other bearable faults should have time response in 10 seconds or 
less. The developed simulation algorithm computes the fitness function 
using particle swarm optimization in 0.3575 seconds, converging within 
first 50 iterations on core i3 processor, 2.50GHz machine. 

b) Output variables of the fuel constraint generation 
models 

The renewable energy generation capacities are illustrated in 
table 2.0, where the wind turbine generation model has 3 input variable 
parameters/ data sets i.e. Wind Turbine Output Coefficient (WTOp), Wind 
Turbine diameter (WTd) and variable wind velocity (Wv) with a single 
output (WTG). Hydro-turbine model has 3 input variables i.e. hydraulic 
head (HTh), Volumetric Flux (HTQ) and Hydro-turbine efficiency 
(HTeff), with a single output (HTG). Solar PV Model has 3 input 
variables i.e. Solar Radiation (H), output co-efficient (OpCoef) and Area 
(A) with one output (PVG). The geothermal generation model carries the 
base load with a capacity of 175 MW. The four generation models give a 
total output variable (TotalGen) as shown in table 2.0. 

Table 2.0 Output variables of the fuel constraint generation models 

WTG HTG PVG GTG TotalGen

0.220 0.078 0.250 175 175.549

1.554 4.010 3.152 175 183.716

5.074 12.624 6.900 175 199.598

12.867 26.165 11.600 175 225.632

28.299 44.879 17.363 175 265.541

56.509 69.013 24.302 175 324.825

105.020 98.813 32.537 175 411.371

184.465 134.524 42.194 175 536.183

309.458 176.392 53.399 175 714.250

499.602 224.664 66.288 175 965.554

780.655 279.585 81.000 175 1316.239

c) A sample ideal load curve for load profiling  

An ideal load curve that consists of loads from the Kenya national 
grid, (western region) as illustrated in fig. 1 is used to examine the 
difference between generation and demand. 

d) Optimal generation commitment curve 

From the optimization of unit commitment suitable for the load 
profile, the 2 optimal generation models shown in fig. 2 are used to
examine the power flow. At the times of severe power deficiency, the 
generators can be dispatched optimally in 2 different models 1 and 2, in 
order to track the load curve closely, depending on available generation. 

Fig. 1 Load profile curve for the model micro-grid 

Fig. 2 Optimal generation commitment curve 

e)  Power imbalances for each of the optimal generation 
commitments  

Power imbalances are derived, considering two models of generation 
reserves for power borrowing, resulting in a set of 4 similar power 
imbalance curves illustrated in fig. 3. A net power imbalance is eminent, 
as a result of unpredictable renewable energy source generation and 
probable load switching by consumers. The renewable energy micro-grid 
remains resilient for short periods of low net power imbalances, since the 
inertia constant of the wind, geothermal and hydro plants provides the 
self-restoration although with larger swings in the swing curve. A positive 
power imbalance is economically desirable since the operator will not 
incur the cost of energy not supplied. 
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For large negative net power imbalances, which occur majorly at the 
peak demand periods, it’s necessary to take remedial measures of the last 

resort such as load shedding, by treating the loads as faults and 
disconnecting the feeders. This leads to economic losses on both sides of 
network i.e. to consumers and to operator in pursuit for a secure grid. 

f)  Transient Stability swing curve for the RE Micro-grid 

The coherent transient swing curve for the highest power deficiency, 
investigated for a period of 1 hour (3600 seconds), at intervals of 10 
seconds shows (in fig. 4), unstable system, requiring an under frequency 
load shedding for restoration of system stability. Investigation of the 
transient frequency stability is carried out, for the largest power 
imbalances, at intervals of 30 seconds which show that the system is 
unstable with swing curve increasing its swing amplitudes continuously 

Fig. 3 Power imbalance curves considering generation reserves 

Fig. 4 Transient stability – coherent swing curve for the RES Micro-
grid 

c) CONCLUSION AND RECOMMENDATION 

A highly penetrated RES islanded micro-grid exhibits both sessions 
of extra power potential generation and power deficiency. Optimization of 
the unit commitment using intelligent search PSO algorithm indicates 
improvements in net power imbalance and thus lower amounts of load will 
be affected by demand control measures. Connecting the micro-grid to 
national grid/ power pool solves these challenges in a smart metering 
power system. However, in the advent of climate change campaign, the 

national grids will be highly penetrated by renewable energy sources, 
multiplying the effect of instability. Although optimal unit commitment 
and dispatch lower the impact of demand control, an optimal under 
frequency load shedding (OUFLS) still necessary to restore the grid from 
frequency collapse. A localized OUFLS scheme at the islanded micro-grid 
levels would easily stabilize the overall network with consideration for 
primary feeder prioritization. 
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