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Abstract— Growth in energy demand stimulates a need to meet 

this demand which is achieved either through wired solutions 

like investment in new or expansion of existing generation, 

transmission and distribution systems or non-wired solutions 

like Demand Response (DR). This paper proposes a Q-learning 

algorithm, an off-policy Reinforcement Learning technique, to 

implement DR in a residential energy system adopting a static 

Time of Use (ToU) tariff structure, reduce its learning speed by 

introducing a knowledge base that updates fuzzy logic rules 

based on consumer satisfaction feedback and minimize 

dissatisfaction error. Testing was done in a physical system by 

deploying the algorithm in Matlab and through serial 

communication interfacing the physical environment with the 

Arduino Uno. Load curve generated from appliances and ToU 

data was used to test the algorithm. The designed algorithm 

minimized electricity cost by 11 % and improved the learning 

speed of its agent within 500 episodes.  
 

Keywords— Demand Response, Q-Learning, Reinforcement 

Learning, Smart Home Energy Management System, Time of Use  

I. INTRODUCTION  

Electrical energy has the advantage of versatility (can be 
put to multiple uses), cleanliness and can be transported at the 
speed of light. However, one major problem this form of 
energy faces is the expense of providing grid-scale storage.  
For this reason, the energy generated must simultaneously be 
consumed. That is, energy generation must balance energy 
demand plus energy losses at all times, a necessity that also 
facilitates support for system integrity (constancy of system 
frequency). The Kenya Least Cost Power Development Plan 
(LCPDP) report findings forecast an excess generation 
compared to demand in the coming years [1] and the 
consequence is an increase in electricity prices to meet costs 
due to excess generation.  

Demand Side Management (DSM) has been demonstrated 
as an effective tool for promoting energy efficiency and 
balance between energy generation and demand. DSM as an 
overarching topic encourages energy consumers and utilities 
to be energy efficient. The elements of DSM include Load 
Management and Demand Response (DR). As one of the 
vehicles of DSM, DR refers to short-term responses to 
electricity market prices on the demand side/ by consumers 
[2]. DR programs are developed to encourage short-term load 
reductions by consumers when the energy pricing is high 
particularly during peak hours. DR programs are categorized 

into price and incentive-based [2]. Examples of DR price-
based programs include the Static Time of Use (ToU) rates, 
Critical peak pricing (CPP), and Real-Time Pricing (RTP). 
Research on DR algorithms has evolved with Q-Learning 
agent-based algorithm being the predominant method.  

This paper proposes an approach objectively to decrease 
the learning speed of a Q-learning agent and integrating 
consumer feedback on optimal policy by an agent subject to a 
static ToU. The rest of the paper is organized as follows; 
Background and Related Work, Methodology, Results and 
Discussion, Conclusion, Acknowledgement and References.  

II. BACKGROUND AND RELATED WORK 

A review of DR algorithms and modeling techniques by 
[3] illustrates Reinforcement Learning (RL) as a 
predominantly applied method in DR applications when 
problems are formulated as a Markov Decision Process 
(MDP). RL algorithm is considered more suitable in real-
world applications, particularly DR. One of the RL algorithms 
widely used in DR is Q-learning which is agent-environment-
based and seeks to establish an optimal policy from a set of 
actions. The authors concluded that most reinforcement 
learning algorithms have been performed in a simulation 
environment which has limited the implementation of such 
algorithms in residential and commercial buildings. Testing of 
algorithms in physical systems is a potential research path to 
measure the capability, flexibility and reliability of control by 
reinforcement learning agents. Limited publications 
considered human feedback through estimation of 
dissatisfaction function. Some algorithms are characterized 
with a curse of dimensionality problem particularly for large 
state-action where the speed of convergence is significantly 
reduced and subsequently learning speed by RL agent.  

Other approaches explored include intelligent residential 
consumer systems that trade with an Energy Storage System 
(ESS) while non-intelligent consumers are given the option of 
purchasing energy from the ESS pool [4]. Intelligent 
residential systems have a smart agent that manages the ESS 
based on the pool price and neighborhood energy demand. 
The authors preferred a fuzzy inference system for the battery 
and price by setting a fuzzy logic where values of input vector 
through fuzzy rules are translated into corresponding output 
vector. The fuzzy rules represent the infinite states of energy 
price and the State of Charge as finite states.  
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The authors [5] proposed a demand response scheme using 
RL with a single agent and integrates fuzzy reasoning to 
approximate values for reward functions. Human preference 
is considered in the control feedback as a state at each time 
step. Q-learning (an off-policy RL technique) was considered 
in selecting an optimal decision. The MDP constituted state-
space with all the possible states in terms of power demand 
and electricity price signals. The reward function was 
implemented using fuzzy logic which approximates the 
numerical reward for a certain action and state. The actions 
with the highest reward values are considered optimal and 
corresponding actions implemented.  

Multi-agent approaches included the design of a multi-
agent RL intending to achieve an efficient home-based DR by 
modeling a one-hour ahead scheduling of smart appliances for 
a home energy management system with PV generation [6]. 
The proposed RL approach consists of two parts. The first part 
is a training of the Extreme Learning Machine (ELM) 
algorithm which is based on the feed-forward Neural 
Network. The ELM, using previous 24-hr data, predicts the 
24-hr future trend on electricity prices and solar PV generation 
output. The predicted data is input to the second part which is 
a Q-learning algorithm designed to make hour-ahead 
decisions on energy consumption based on optimal policy. 
The optimal Q value is obtained using the Bellman equation. 
RL solution can be summarized to entail three algorithms, first 
algorithm the main function that initializes the parameters of 
the Q learning. The second algorithm is a feedforward NN 
with 24-hr data on electricity prices and solar generation as its 
input. The output is the predicted information on electricity 
price and solar generation for the next hour. The third 
algorithm is the Q-learning algorithm that makes scheduling 
decisions based on optimal policy.  

Real-time DR was conducted to minimize the cost of 
electricity and maximize user comfort [7]. The authors 
presented an optimal scheduling strategy of appliances based 
on deep reinforcement learning (DRL) considering both 
discrete and continuous policies. An approximate policy was 
design based on the neural network (NN) to learn the optimal 
scheduling strategy from high-dimensional data of real-time 
pricing, states of an appliance, and outdoor temperature. The 
NN is trained using a policy search algorithm. The MDP 
structure consists of states as real-time electricity prices, 
outdoor temperature, and state of all appliances. Actions 
include binary control action variables/ discrete (deferrable 
appliances), continuous control variables (regulated 
appliances). Reward function modeled on three aspects: 
thermal comfort index, electricity cost, and consumer range 
anxiety. In solving the MDP, a neural network-based 
stochastic policy is adopted to determine the optimal policy. 
Bernoulli distribution and Gaussian distribution functions are 
used to estimate the approximate policy when the action is 
discrete and continuous, respectively. NN policy network 
determined the parameters for the distribution functions by 
learning them. The architecture of the NN takes in the input 
parameters (past electricity prices, outdoor temperatures, and 
states of all the appliances) and outputs the discrete and 
continuous actions by Bernoulli and Gaussian distribution 
functions respectively. 

Most RL algorithms have been tested in simulation 
environments with limited testing in physical systems while 
others presented approaches that are considered complex for a 
simple residential system. In the context of integrating human 

feedback, the simulation environment limits actual feedback 
which is essential in understanding the performance of the 
agent. The curse of dimensionality has been addressed but 
learning speeds can still be significantly improved. Besides, 
the agent’s action selection preference requires both 
exploitation and exploration of the environment. Multi-agent 
systems involved assigning an agent to each appliance which 
seems a complex system for small residential systems.   

III. METHODOLOGY 

A. Markov Decision Process (MDP) Model 

1) Environment 
The environment consists of non-schedulable appliances 
(mandatory) and schedulable (interruptible and non-
interruptible) as the primary participants in DR. Schedulable 
appliances provide the leverage to deploy load management 
strategies per the ToU and realize energy savings. Load 
classification and load control level emanates from arranging 
load demand for the appliances according to consumer 
preference and priority and computing their cumulative load 
demand, respectively. 

The total demand,�� from all the appliances at any given 
time is given by equation 

 �� = ���� + ���� + �� ��� + �� ��	 (1) 

 

Load control levels (LCL) are defined cumulatively by 
adopting load demand for each appliance category.  
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�
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Where ��� , ��� , ���� and ���	 is the total load demand for 
non-schedulable, non-interruptible, priority one and two 
interruptible appliances, respectively.  

2) Agent 
A single agent is designed and trained using data from a 

residential consumer and learns the environment for optimal 
policy output. 

3) State Space 
The set of state-space consists of the LCL and electricity 

static ToU.  

4) Action Space 
The action space consists of a set of load management 

strategies (load clipping, valley filling and load shifting) and 
status quo (no action). The balance in the action space is given 
in Fig 1. Load shifting and clipping actions are compensated 
by valley-filling.  

 

Fig. 1. Action space balance 

The action space per the LCL and electricity price grid is 
assigned a weight which is essential when integrating 
feedback from consumers.  
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B. Reward Function 

According to [8], the three main types of fuzzy logic 
systems commonly used include fuzzifier and defuzzifier, 
pure and Takagi-Segeno-Kang (TSK) fuzzy systems. A fuzzy 
system with fuzzifier and defuzzifier is commonly used as it 
eliminates problems associated with pure and TSK fuzzy 
systems. A Fuzzy logic system constitutes a crisp input (the 
LCL and static ToU) and crisp output is the numerical reward 
approximated by the system’s fuzzy inference engine. 

C. Fuzzy Rule Base and Fuzzy Inference Engine 

A fuzzy rule base as the heart of the fuzzy system 
constitutes a set of IF-THEN rules. From Fig. 2, eight rules in 
a canonical form are defined in Table I. The fuzzy set A 
includes the LCL in a universe of discourse V equivalent to 
Load control 4 (LC4) and the status of electricity prices 
(whether Low or High) in a universe of discourse derived from 
historical tariff data. 

TABLE I.  THE CANONICAL FORM OF THE RULE BASE 

 

Fuzzy set B constitutes action space linguistic form Highly 
Recommended (HR), Recommended (R), Least 
Recommended (LR) and Not Recommended (NR).  

Fig. 2. Load control and electricity prices grid 

Mamdani inference method, a type of composition-based 
inference, is adopted based on intuitive appeal. Mamdani 

combination is defined as a single fuzzy relation ��, 

 �� = � ����
���

 

 
(6) 

A minimum inference engine is adopted in this research 
defined as, 

 ������ = Y� !" = 1 [ sup! ∈ ) �*+ ,�-��!�, �-.��!��, …, �-0��!1�, ��2��� 3]  

(7) 

Triangular fuzzifier maps a real value 5675  ∈ 8  to a fuzzy 

set 9�  *+ )  characterized by a triangular membership 
function, 

 �-�!�
=

⎩⎪⎨
⎪⎧,1 − |!� − !@AB|C� 3 … ,1 − |!1 − !@AB|C1 3  

*D E!F − !F,@ABE ≤ CF , * = 1,2, . . . , +0                                  *D KLℎNOP*QN
 

 

 

(8) 

This paper adopts the center of gravity (CoG) defuzzifier. The 

CoG defuzzifier specifies �∗ as the area center covered a 

membership of S� as  

 �∗ = T �U���V���W�XT ��������W�X  
 

(9) 

The defuzzifier in this case outputs the approximate reward 
based on the crisp input (LCL and static ToU).  

D. Introduction to Q-Learning Algorithm 

Q-learning algorithm is a temporal difference learning 
algorithm and an off-policy reinforcement learning that aims 
to learn optimal policy and approximates the current optimal 
action-value Y∗ using the Bellman equation, 

 ��Q� ,  �� ← ��Q� ,  ��+ [[O� + \� !A��Q�]�,  �− ��Q� ,  ��] 
(10) 

Q-learning algorithm computes the value of taking an action   in state s and determines the optimal policy, Y∗�Q,  �  from 

a set of actions  ∈ 9�Q� for that particular state. The 

parameters [  and \  represent the learning rate of the 
algorithm and the discount factor [9], [10].  

E. Exploration and Exploitation 

This paper adopts the ^ − _ONNW� exploration technique 
which ensures actions are selected randomly (exploration) and 
greedily (exploitation) with a probability ^  and 1 − ^ , 
respectively. 

  � = `O +WK�  aL*K+� !��� �  P*Lℎ bOKC C*c*L� ^P*Lℎ bOKC C*c*L� 1 − ^ 
(11) 

 

F. Returns and Episodes 

The primary goal of an agent is to maximize cumulative 
rewards in a particular time slot. Denote sequence of rewards 
as ��]�, ��]	, ��], …  so that the expected return is 
maximized. The maximized return is considered a function of 
the sum of all rewards.  

 d� =  ��]� + ��]	 + ��] + ⋯ + �f (12) 

Where T is the final time step or episode.  
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G. Integration of Consumer Feedback 

Binary action vectors by the algorithm and consumer at 
time L  are represented as g-hi,� and  gjk1l,� , respectively. 

Then the magnitude of the vector can be used to determine 
consumer dissatisfaction. Consider the length of the action 
vector difference, 

 ∆g =∥ g-hi,� − gjk1l,� ∥ (13) 

When , ∆g = 0 , the consumer is satisfied with the 
algorithm’s optimal policy. However, the consumer shows 

dissatisfaction when ∆g > 0. Consumer dissatisfaction with 
the algorithm’s decision is handled by updating the fuzzy 
rules. However, the reward difference between consumer 
dissatisfaction and algorithm is minimized. The weighting 
method is used to assign the weights of the linguistic action 
space in Fuzzy set B as Highly Recommended (HR) – 0.4, 
Recommended (R) – 0.3, Least Recommended (LR)-0.2 and 

Not Recommended (NR) - 0.1. At L*�N L, the algorithm’s 
action vector and corresponding index are given as: 

 pqAhi,� , rAhi,�s = � !Ug-hi,�V (14) 

 
Consumer feedback is represented as 

 pqtk1l,� , rtk1l,�s = � !Ugtk1l,�V (15) 
 

The difference in reward needs to be greater than zero to 

guarantee an update to the rules. When ��Urtk1l,�V −��UrAhi,�V > 0, then the rules are updated depending on the 

weightage. The load demand and electricity price grid G is 
assigned the maximum of weighted Fuzzy set B. 

 d uUvw1�� �k 	, 
x@��,…,�V, rAhi,�y= dU�vw1�� �k 	, 
x@��,…,��, rtk1l,�V (16) 

 

 dU�vw1�� �k 	, 
x@��,…,��, rtk1l,�V= max �}�~~� S� 

(17) 

 
An example of the fuzzy rule update is illustrated in Fig. 3.  
 
 
 
 
 
 
 
 
 

Fig. 3. Fuzzy rule update using the knowledge base 

H. Time of Use Tariff Structure 

The tariff structure is given in Fig.4. Historical tariff data for 
residential consumers in Kenya are distributed around the 
mean which is also the shoulder or mid-peak. ToU plans from 

Ireland Italy, Australia, Canada and Sri Lanka [12] are used 
in benchmarking.  

I. Testing Setup 

The testing set-up in Fig. 5 is implemented using the 
Arduino Uno kit. An Arduino program is preloaded in the 
microprocessor. This program checks if the serial port has 
changed for processing. Matlab program which is the agent 
communicates with the preloaded program through serial 
communication.  

 

 

 

 

 

 

Fig. 4. Static Time of Use tariff plan 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Testing set-up for the algorithm 

IV. RESULTS AND DISCUSSION 

Fig. 6 expresses the learning curve as the graph of mean 
cumulative rewards as a consequence of the agent’s optimal 
policy selection against the number of episodes or training 
time taken. It was observed that the agent converged after 500 
episodes.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The training curve for the algorithm 

 
 

 

 

Authorized licensed use limited to: South Eastern Kenya University. Downloaded on November 17,2022 at 08:00:11 UTC from IEEE Xplore.  Restrictions apply. 



2021 IEEE PES/IAS PowerAfrica 

 

 

The overall effect of the agent’s action is evaluated 
through an overlay of the recommended actions on the initial 
load curve. The applicable load management strategies 
include load shifting, valley-filling and status quo. Appliances 
in load category 3 were shifted during the peak times when the 
tariff is high. This happens between 07:00-16:00 and 18:00-
21:00 HRS which are the mid-peak and peak hours 

 

 

 

 

 

 

 
 

 

 

Fig. 7. Overlay of Load Management Strategies 

 

 

 

 

 

 

 
 

 

Fig. 8. Comparison of Energy Cost before and after demand response 

For the status quo, the net cost is zero since no action is 
taken. Fig 7 shows that during valley filling, the demand 
response effect is an extra electricity cost on the consumer 
since appliances are added hence an increase in total load. The 
costs and savings as a result of the corresponding applicable 
load management strategies only at the region or time when 
they are applied as shown in Fig. 8. The net energy savings 
realized is 11 percent as in Fig. 9.  

 

 

 

 

 

 

 

 

 

 

Fig. 9. Comparison of Energy Cost before and after demand response 

V. CONCLUSION 

Q-learning is a predominant tool of reinforcement learning 
that researchers have found resourceful when establishing 
optimal policy from a set of actions. This paper proposed 
improving some of the gaps by establishing a state-space 
action consisting of consumer-tailored load categories by 
grouping appliances according to their priority and usage 
frequency. A knowledge improvement base was developed to 
update the fuzzy rules and ensure the algorithm minimizes 
consumer dissatisfaction. This approach resulted in the 
agent’s improved learning speed with convergence in 500 
episodes and cost savings of 11 percent. A testing system was 
assembled and interfaced with a graphical user interface 
designer using app designer in Matlab. Through serial 
communication, the Arduino microprocessor received 
command signals from Matlab and either activated or 
deactivated a relay to turn the loads on or off.  

Future research work will focus on developing consumer 
dissatisfaction models using Artificial Neural Network (ANN) 
and cloud-based technologies such as Microsoft Azure and 
integrating the models as a crisp input in fuzzy systems.  
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