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Abstract

Background

Anthrax is an important zoonotic disease in Kenya associated with high animal and public

health burden and widespread socio-economic impacts. The disease occurs in sporadic out-

breaks that involve livestock, wildlife, and humans, but knowledge on factors that affect the

geographic distribution of these outbreaks is limited, challenging public health intervention

planning.

Methods

Anthrax surveillance data reported in southern Kenya from 2011 to 2017 were modeled

using a boosted regression trees (BRT) framework. An ensemble of 100 BRT experiments

was developed using a variable set of 18 environmental covariates and 69 unique anthrax

locations. Model performance was evaluated using AUC (area under the curve) ROC

(receiver operating characteristics) curves.

Results

Cattle density, rainfall of wettest month, soil clay content, soil pH, soil organic carbon, length

of longest dry season, vegetation index, temperature seasonality, in order, were identified

as key variables for predicting environmental suitability for anthrax in the region. BRTs per-

formed well with a mean AUC of 0.8. Areas highly suitable for anthrax were predicted pre-

dominantly in the southwestern region around the shared Kenya-Tanzania border and a belt

through the regions and highlands in central Kenya. These suitable regions extend west-

wards to cover large areas in western highlands and the western regions around Lake Victo-

ria and bordering Uganda. The entire eastern and lower-eastern regions towards the

coastal region were predicted to have lower suitability for anthrax.
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Conclusion

These modeling efforts identified areas of anthrax suitability across southern Kenya, includ-

ing high and medium agricultural potential regions and wildlife parks, important for tourism

and foreign exchange. These predictions are useful for policy makers in designing targeted

surveillance and/or control interventions in Kenya.

We thank the staff of Directorate of Veterinary Services under the Ministry of Agriculture,

Livestock and Fisheries, for collecting and providing the anthrax historical occurrence data.

Author summary

Anthrax is a neglected zoonosis worldwide. In Kenya, outbreaks have been reported in

wildlife, livestock, and humans, resulting in severe public health burden and socio-eco-

nomic impacts. Because of this, anthrax is ranked as the highest priority disease in the

country. To identify factors that influence the spatial distribution of the disease in Kenya,

we analyzed surveillance on available anthrax outbreaks recorded in the southern half of

the country. Areas predicted to be highly suitable for the disease were predominantly in

the southwestern region around the shared Kenya-Tanzania border running as a belt

through central regions and central highlands of Kenya. These suitability regions extend

westwards to cover large areas in western highlands and the western regions around Lake

Victoria and bordering Uganda. The entire eastern and lower-eastern regions towards the

coastal region were predicted to have lower suitability for anthrax. Cattle density, rainfall

of wettest month, soil clay content, soil pH, soil organic carbon, length of longest dry sea-

son, vegetation index and temperature seasonality were key variables predicting the distri-

bution of anthrax in the region. The study generated a suitability map depicting

geographical areas that can be targeted for risk-based surveillance and or control measures

for the disease.

Introduction

Anthrax is a zoonosis caused by the spore-forming bacterium Bacillus anthracis and is of

global importance that mainly affects domestic and wild herbivores. Its occurrence patterns

are influenced by environmental, socioeconomic and cultural factors [1,2]. In Kenya, anthrax

is endemic and has been ranked as the most important zoonotic disease [3]. Impacts of anthrax

outbreaks include reduced livestock production due to mortality and associated socio-eco-

nomic losses, higher public health burden, and decimation of wildlife [4]. Analyses conducted

in other regions have demonstrated environmental, socioeconomic, and cultural factors can

structure anthrax occurrence patterns [1,2], and moreover, studies show that the disease clus-

ters in specific ecological conditions [5,6]. However, there is limited knowledge on factors

associated with the distribution of anthrax in Kenya. Such information is required to estimate

the spatial distribution of the disease in the country and to target surveillance and control

measures.

Ecological niche models (ENMs) aim to correlate species’ occurrence data (point locations)

with environmental covariates (gridded data) to determine suitable environmental conditions

that meet a species’ ecological requirements. Those requirements are then mapped onto the

landscape to predict areas of relative habitat suitability [7,8]. The ENM predictions provide
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test for biogeographical hypothesis that spatial variation in the numbers and types of species

results from interactions from the species and their environments [9]. ENMs have been used

widely to map the potential geographic distribution of a wide range of taxa. ENMs utilize algo-

rithms such as machine learning and rule-based decision trees [10–12] and they are often fitted

to presence/absence or presence-only data to map potential distributions. Many machine

learning and rule-based algorithms have been developed over time; these include boosted

regression trees (BRT), random forests (RF), maximum entropy (Maxent), genetic algorithm

for rule-set prediction (GARP), generalized additive models (GAMs) and generalized linear

models (GLMs) among others [13–17]. They are increasingly being used to analyze disease

surveillance records from government registries [12,18]. ENMs have been used to predict

areas that are suitable for B. anthracis globally [19] and across several countries: Australia,

USA and Mexico, China, Ghana, Italy, Kazakhstan, Kyrgyzstan, West Africa, Tanzania, and

Zimbabwe [10,12,20–23]. Over the past 60 years, historical outbreak data have been recorded

in Kenya. Here we use those data that had known geographical coordinates to model the

potential geographic distribution of anthrax in Kenya.

The objective of this current study was to predict the potential geographic distribution of

anthrax in Kenya using a BRT algorithm and to identify the main predictor variables influenc-

ing the distribution. BRTs have recently been considered a dominant algorithm for mapping

transmission risk of infectious zoonoses [19,24]. Furthermore, several studies noted high pre-

dictive performance [25–27]. BRTs have been used to model the distribution of anthrax over

several landscapes [19,21,26].

Materials and methods

Ethics statement

This study was a component of a broader research initiative on anthrax hotspots in Kenya

where the approvals were obtained from KEMRI Scientific and Ethics Review Unit (SERU)

(Ref: KEMRI/RES/7/3/1).

Study area

This study was limited to the southern half of Kenya, as more than 95% of all reported out-

breaks that could be mapped with certainty were within the study area [28]. The selected area

extends between Latitude 4˚40’3800 S to 1˚5605900 N Latitude and 33˚56’2800 E to 41˚3502400 E

Longitude (Fig 1) and represents ~50% of the country’s total land surface and ~91% of the

Kenyan human population, with those below poverty line Headcount Index ranging between

10.3 and 84.9 (mean = 43.4) [29]. The mean cattle density in this area was estimated at 3666

Tropical Livestock Units (TLU) [30].

The study area encompasses all major wildlife protected areas, including Lake Nakuru

National Park, which reported multiple anthrax outbreaks in the recent past [5]. Based on

World Reference Base (WRB) classification [31] the types of soils found in the area were

diverse (totalling 66 types). Soils with calcium carbonate covered 13% of the total area; these

have been associated with anthrax endemic areas [32].

The climate in this study area ranges from humid tropical, along the coast to temperate and

sub-tropical inland and hot and dry in arid and semi-arid areas in the mainland areas. The

area has a bimodal seasonal pattern with the long rains season observed between March and

June, and short rainy season between September and December. Mean temperatures generally

vary with elevation although there has been increased variability in temperature in recent

years, with estimated increase of 1.0˚C since 1960. In addition, rainfall distribution has

changed in space and time, but its intensity has largely remained the same [33,34].
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Fig 1. Map of Kenya showing the study area and the spatial distribution of anthrax occurence data (red circles) recorded between 2011 and 2017. Areas 1–4

arbitrarily represent important regions for describing the predicted distribution of anthrax: 1) western highlands; 2) Lake Victoria basin; 3) southwestern region; 4)

central highlands.

https://doi.org/10.1371/journal.pntd.0009301.g001
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Data management and analysis

Occurrence data and generation of pseudo-absence data

A total of 666 anthrax outbreak records collected between 1957 to 2017 were obtained from

the Directorate of Veterinary Services (DVS) archives [6]. Out of these, 86 records of livestock

outbreaks reported between 2011 to 2017 could be mapped to the geographic coordinates of

the outbreak and were used as occurrence data. As this study applies a presence/absence

modeling approach, occurrence data were thinned to a single point per pixel of the resolution

of environmental covariates used [35,36]. For each modeling experiment (see below), an equal

number of pseudo-absence points were randomly generated within the study area. All pseudo-

absence points were at least 5km from each of the 69 spatially unique presence points to build

unbiased and reliable models [37].

Environmental data and variable selection

Climatic and other environmental data hypothesized to influence the spatial distribution of

anthrax were downloaded from online databases; sources of these data are shown in (S1 Text).

Covariates were downloaded as raster files, clipped to the study area, and resampled to 250m

resolution with bilinear technique. Before fitting the BRT models, we used the variable infla-

tion factor (VIF) to test for multicollinearity with cut-off of VIF< 10 to reduce highly corre-

lated variables [34]. The VIF is a measure of the degree of multi-collinearity between

independent variables in a regression model; where small VIF values indicate low correlation

among variables while large VIF greater than 10 indicate severe collinearity [38] All data sets

were processed and analyzed using QGIS 3.1.6.0 and R 3.5.3 [39,40].

Model building and evaluation

Here we implemented a BRT algorithm. Briefly, BRTs combine the strengths of regression

trees and boosting to build many simple decision trees adaptively. Thus, BRT combines statis-

tical and machine learning methods to combine large numbers of shallow trees, improving

prediction across the process. The BRT performance can be further improved by tuning sev-

eral hyperparameters (values used to control the model learning process) detailed in [13]: bag-

ging fraction (bf) introduces randomness into the model by defining the proportion of data

drawn at random from the original data at each step, thereby improving performance and

reducing overfitting; tree complexity (tr) defines the number of nodes for each tree; learning

rate (lr) varies the contribution of each tree added to the model and defines the number of

trees preferable under several observations and computational time available for model fitting

i.e. smaller learning rate results in larger number of trees.

The BRTs were built using the ‘gbm’ package (‘gbm.step’ extension) in R 3.5.3 [41]. We

employed a bootstrapping, or ensemble approach, generating 100 individual BRT experiments.

For each experiment, new pseudo-absence data were generated and combined with the pres-

ence data. The combined data were then partitioned into model training (75% of the data) and

model evaluation sets (25% of the data).

We assessed ‘gbm.step’ function settings to obtain the best predictive performance based on

AUC under different bagging conditions, learning rate and tree complexity and the parameters

chosen based on the minimum predictive error. The final ‘gbm.step’ was thus set to fit the

training data with learning rate (lr) = 0.001, bagging fraction (br) = 5 and maximum

tree = 2500. Model performance was evaluated using AUC (area under the curve) ROC

(receiver operating characteristics) curves for each experiment and averaged across all experi-

ments. AUC has been identified as the most prominent among methods of evaluating ENMs
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ability to predict the observed distributions [28], however, its reliability has also been chal-

lenged [42]. Predictions for each experiment (n = 100) were generated and averaged to obtain

a final anthrax distribution map for the study area; the lower 2.5% and upper 97.5% confidence

intervals were also mapped.

In order to gain more insights into the model predictions, partial dependency plots (PDPs)

were generated. The PDPs graphically illustrate the functional relationship between the target

response and the set of predictors [43]. The PDPs were generated with pdp R package [43] for

each and across experiments to demonstrate how each individual predictor influenced mean

prediction probabilities and strength of its contribution to the prediction.

Results

Variable selection

VIF analyses filtered the 41 candidate variables (S1 Text) to 18 independent variables

(Table 1). These 18 independent variables were fitted in the modeling process.

Predicted distribution of anthrax suitability

Fig 2 illustrates the potential distribution of anthrax for southern Kenya. The mean AUC of

the ensemble was 0.8. The proportion of the study area predicted to be suitable for anthrax at

probability > 0.6 was 22% of the study area. These areas were predominantly in the defined

regions (1–4). Areas to the periphery of these regions and along the coastal strip had suitability

probabilities ranging between 0.4 and 0.6. The entire eastern and lower-eastern regions

towards the coastal region were predicted to have lower suitability (probability of<0.2) for

anthrax. The predicted high suitability areas included areas near wildlife national parks and

game reserves including Nairobi, Nakuru, Mount Kenya, Mwea Mount Elgon National Parks,

and Masai Mara National Reserve (Fig 3).

Table 1. Variables fitted in BRT algorithm for niche modeling.

Variables Units

1. Rainfall wettest month mm

2. Temperature Seasonality ˚c�10

3. Calcic Vertisols %

4. Soil organic carbon density kg/m3

5. Clay content mass fraction (%)

6. Cattle density animals/km2

7. Enhanced vegetation index index

8. Haplic Calcisols %

9. Haplic Vertisols %

10. Annual Average Relative Humidity %

11. Length of longest dry season months

12. Palmer Drought Severity Index index

13. Potential evapotranspiration mm

14. Soil pH pH

15. Silt content mass fraction (%)

16. Slope degrees

17. Soil Moisture m^3/m^3

18. Soil texture factor

https://doi.org/10.1371/journal.pntd.0009301.t001
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Fig 2. Panel A: Predicted geographic distribution of anthrax in southern Kenya based on the mean prediction of an ensemble of 100 boosted

regression tree experiments. Panel B shows the upper 97.5% and C the lower 2.5% confidence intervals. Regions 1–4 are used as reference areas for the

discussion: 1) western highlands; 2) Lake Victoria basin; 3) southwestern region; 4) central highlands.

https://doi.org/10.1371/journal.pntd.0009301.g002
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Fig 3. Location of National Parks and Game Reserves overlaid on the predicted distribution of anthrax in southern Kenya based on boosted regression tree

experiments.

https://doi.org/10.1371/journal.pntd.0009301.g003
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Relative variable influence across the 100 BRT experiments is illustrated in Fig 4. Cattle density,

rainfall of wettest month, soil clay content, soil pH, soil organic carbon, length of longest dry season,

vegetation index, and temperature seasonality were more important across the experiments.

Partial dependency plots (PDP) are illustrated in Fig 5. High cattle density, increased rain-

fall of the wettest month (between ~200–500 mm), and high percentage of soil clay content

(~35–45%) were associated with high anthrax probability. A moderate enhanced vegetation

index (associate with grasslands) was also predictive. These variables have been hypothesized

as important for predicting anthrax in other ENM studies.

Discussion

This study predicted the geographic distribution of anthrax in southern Kenya using livestock

surveillance records collected by the Directorate of Veterinary Services (DVS) between 2011

Fig 4. Variable relative influence for final variable set used to model the distribution of anthrax in southern Kenya using

boosted regression tree experiments. Error bars represent variability across an ensemble of 100 BRT experiments.

https://doi.org/10.1371/journal.pntd.0009301.g004
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and 2017 and publicly available environmental data using a boosted regression trees ensemble

modeling approach. Our model predicted areas with environmental conditions suitable for

anthrax predominantly in the southwestern regions around the shared Kenya-Tanzania border

and running as a belt through central highlands of Kenya. These suitable regions extend west-

wards to cover large areas in western highlands and regions around Lake Victoria bordering

Uganda. However, the proportion of these suitable, particularly those predicted with suitability

probability of> 0.6 was 22% of the total study landmass (~580,367km2). The entire eastern,

and lower-eastern regions towards the coastal region were predicted to have lower suitability.

Variables found to have the greatest contribution to the potential distribution of anthrax com-

prised of (a) soil properties—clay content, pH and organic carbon; (b) climatic variables—

rainfall of wettest month, temperature seasonality and length of longest dry season (c) cattle

demography—cattle density; and (d) environmental variable—vegetation index.

Fig 5. Partial dependency plots (PDP) showing marginal effects on the mean prediction probability of potential anthrax

distribution by each variable across the 100 BRT experiments.

https://doi.org/10.1371/journal.pntd.0009301.g005
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The regions that our models predicted to be suitable for anthrax are largely characterized

by high and medium agricultural potential with established history of intensive and extensive

livestock production including mixed crop-livestock farming systems in Kenya. These regions

include substantial areas used by colonial settlers for beef and dairy agriculture and termed

“white highlands”. Consistent with previous predictions, human and livestock anthrax vulner-

ability is concentrated in rural rain-fed systems similar to other predictions [19]. Livestock

movements through trade may have disseminated Bacillus anthracis, the causative agent of

anthrax, across suitable regions impacting the distribution defined by occurrence records.

These regions also handle intense human activities characterized with inadequate knowledge

on anthrax carcass disposal, a pathway for inter-region dispersion and local persistence of B.

anthracis, perhaps influencing the geographical distribution of the disease as well. We estimate

that the human population in the predicted suitable areas on a probability of>0.6 is

27,988,699 based on World spatial population 2020 [44]; the majority facing well-known

anthrax occupational exposure as animal health practitioners, farmers, herders, butchers and

meat sellers.

Interestingly, despite our study employing livestock anthrax occurrences alone, our model

predicted regions suitability for anthrax in wildlife conservation areas that our team has previ-

ously reported as likely anthrax hotspots such as Nakuru National Park [4,5]. Nevertheless, it

is known that the entire periphery and rarely the interior of wildlife conservation areas are

generally shared by both livestock and wildlife, presenting possible bidirectional anthrax trans-

mission interfaces such as those hypothesized for bovine tuberculosis or foot-and-mouth dis-

ease (FMD) [45,46]. Indeed, the model predicted likely transboundary anthrax suitability

across the larger Mara-Serengeti ecosystem along the shared Kenya-Tanzanian border. Previ-

ous studies have reported anthrax occurrences in Serengeti National Park in Tanzania with

prediction maps similar to ours identifying areas suitable along the border on the Tanzanian

side [47,48]. If not curbed, anthrax could impede wildlife conservation efforts, particularly for

endangered species inhabiting these anthrax-suitable ecosystems. Challenges in reporting

anthrax outbreaks in wildlife include underestimation of anthrax burden in wildlife. Niche

modeling, such as carried out in this study, presents opportunities for a better approximation

of geographical risk. For instance, the lower eastern regions towards the coastal region, home

to the vast Tsavo National Park, were predicted as lowly suitable for anthrax reflecting previous

findings [5].

Bacillus anthracis is an environmental pathogen. Therefore, the occurrence and distribution

of anthrax is expected to be limited by various climatic variables. Thus specific patterns of rain-

fall, temperature, and their seasonality have been applied to determine anthrax distribution in

previous niche modeling studies [10,49,50]. In our study, precipitation level of the wettest

month and temperature seasonality were predicted to influence anthrax distribution similar to

studies in Kazakhstan and South Africa, respectively [18,51]. Precipitation provides water that

may influence anthrax in a number of ways–exposing buried spores to the surface, collecting

and concentrating spores in ‘storage areas’ and possibly dispersing the spores through water

run-off [52]. Length of dry season is also suggested to be associated with anthrax outbreaks

similar to a previous study in Tanzania [49]. Animals feeding on short grass close to the soil

during dry season are more exposed to spores increasing chances of anthrax outbreaks [53].

The dry season also leads to water and forage scarcity precipitating a likely livestock-wildlife

anthrax transmission interfaces, at grazing grounds and water points [54].

Soils with high calcium concentrations and a pH> 6.1 are known to influence the global

distribution of anthrax through enabling spore germination, growth, survival, and possibly re-

sporulation in the soil [55]. Also, soil clay content and pH, contained in Vertisol soils are

reported to have a direct influence on germination and sporulation of B. anthracis [19,56]. In
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our study, soil clay was positively associated with anthrax prediction, similar to a recent study

in Minnesota, USA [57]. Additionally, soil clay may play an indirect role by accelerating flood-

ing due to their high water-retaining capacity, concentrating the spores, and later providing

conducive environments for the growth of contaminated herbage that attracts grazing by live-

stock [58]. Our study findings suggest that the regions predicted as suitable for anthrax may

contain adequate soil pH to maintain bacterial spores. Having predicted regions suitable for

anthrax and the identified environmental variables, it is possible to design more focused stud-

ies to elucidate the mechanisms behind the possible long-term survival of anthrax spores and

outbreak occurrence in the regions.

Apart from our study picking environmental variables as important, which can be attrib-

uted to environmental conditions defining B. anthracis niches, our study also found cattle den-

sity to be positively associated with anthrax distribution similar to studies in China and

countries located in the Northern Hemisphere [11,21]. High cattle density presents a greater

likelihood of exposure from shared contaminated grazing and/or watering points per capita, as

sometimes seen in wildlife [59].

These results generated a practical and actionable map for targeting anthrax surveillance

and control in livestock areas and nearby wildlife management or conservation areas. Sus-

tained annual livestock vaccination campaigns remain the best-bet method for anthrax control

in both humans and livestock. Data from Azerbaijan confirm that anthrax control in livestock

has measurable reduction in human disease burden [60]. However, the vaccine must be

administered to livestock annually to reduce disease occurrence. A first step in implementing

vaccination is to identify priority areas for targeting campaigns. However, the vaccine is

administered in injections and therefore is not practical to use in wildlife [60,61]. Surveillance

therefore remains critical in wildlife management or protected area, especially areas where

livestock and wildlife may commingle. The map generated in this study can be used to priori-

tize surveillance sites in the parks factoring in the logistical challenges in these locations.

This study had several limitations. The occurrences data used in our study gave a small

sample size which can be associated with sampling bias [62]. However, ENM modelling

approaches are robust enabling use of few and/or biased occurrence data. Broadly, BRTs and

ENMs can perform well with small sample sizes [63]. High model accuracy has been observed

for models based on sample size as small as 5, 10 and 25 relative to models of 100 samples [64].

The same study determined that model performance depends on both sample size and species’

prevalence and increases with decreasing prevalence under constant sample size. In our study,

we restricted modelling to a small area of southern Kenya which contained 95% of all the

anthrax occurrence data decreasing prevalence and reducing bias, both of which increased

model performance. By limiting the study to the southern half of Kenya, where the occurrence

data were concentrated, interpretations for the entire country was also limited. However, a

more intensive anthrax surveillance system has been established within our team to obtain

more representative occurrence data at the national level, to extend our analyses and predic-

tions to the national level in the future. The resolution of some of the spatial data sets (e.g., cli-

mate data) is not granular enough. Their refinement is also hampered by the poor distribution

of synoptic meteorological stations that could provide primary data for correcting these data.

AUC accuracy metrics which we applied for model evaluation have been criticized as not opti-

mal for ENM models accuracy evaluation [42,65], but novel approaches are being explored.

In conclusion, our study predicted areas likely to be anthrax-prone, serving as a proxy of

anthrax risk with associated variables in southern Kenya. These findings covering southern

counties can be implemented in policy, decision support, and protecting public health at the

county level through a One Health approach. Results can then be projected to the whole of

PLOS NEGLECTED TROPICAL DISEASES Spatial distribution of anthrax in southern Kenya

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009301 March 29, 2021 12 / 16

https://doi.org/10.1371/journal.pntd.0009301


Kenya and tested with incoming surveillance data. The findings will also inform future eco-

logical and epidemiological research.

Supporting information

S1 Text. Candidate variable descriptions, online sources and references.

(DOCX)

Acknowledgments

Acknowledgments

Author Contributions

Conceptualization: Fredrick Tom Otieno, John Gachohi, Jason K. Blackburn, M. Kariuki

Njenga, Bernard Bett.

Data curation: Fredrick Tom Otieno, John Gachohi, Harry Oyas.

Formal analysis: Fredrick Tom Otieno, John Gachohi, Samuel A. Canfield, Jason K. Black-

burn, Bernard Bett.

Funding acquisition: M. Kariuki Njenga, Bernard Bett.

Methodology: Fredrick Tom Otieno, John Gachohi, Samuel A. Canfield, Jason K. Blackburn,

Bernard Bett.

Supervision: John Gachohi, Peter Gikuma-Njuru, Patrick Kariuki, Bernard Bett.

Writing – original draft: Fredrick Tom Otieno.

Writing – review & editing: Fredrick Tom Otieno, John Gachohi, Peter Gikuma-Njuru, Pat-

rick Kariuki, Harry Oyas, Samuel A. Canfield, Jason K. Blackburn, M. Kariuki Njenga, Ber-

nard Bett.

References
1. Turnbull PCB, WHO. Anthrax in humans and animals. World Health Organization; 2008.

2. Sitali DC, Mumba C, Skjerve E, Mweemba O, Kabonesa C, Mwinyi MO, et al. Awareness and attitudes

towards anthrax and meat consumption practices among affected communities in Zambia: A mixed

methods approach. PLoS Negl Trop Dis. 2017; 11(5):e0005580. https://doi.org/10.1371/journal.pntd.

0005580 PMID: 28498841

3. Munyua P, Bitek A, Osoro E, Pieracci EG, Muema J, Mwatondo A, et al. Prioritization of zoonotic dis-

eases in Kenya, 2015. PLoS One. 2016; 11(8):e0161576. https://doi.org/10.1371/journal.pone.

0161576 PMID: 27557120

4. Muturi M, Gachohi J, Mwatondo A, Lekolool I, Gakuya F, Bett A, et al. Recurrent Anthrax Outbreaks in

Humans, Livestock, and Wildlife in the Same Locality, Kenya, 2014–2017. Am J Trop Med Hyg. 2018;

99(4):833–9. https://doi.org/10.4269/ajtmh.18-0224 PMID: 30105965

5. Gachohi JM, Gakuya F, Lekolool I, Osoro E, Nderitu L, Munyua P, et al. Temporal and spatial distribu-

tion of anthrax outbreaks among Kenyan wildlife, 1999–2017. Epidemiol Infect. 2019;147.

6. Nderitu LM, Gachohi J, Otieno F, Mogoa EG, Muturi M, Mwatondo A, Osoro EM, Ngere I, Munyua PM,

Oyas H, Njagi O. Spatial clustering of livestock Anthrax events associated with agro-ecological zones in

Kenya, 1957–2017. BMC Infectious Diseases. 2021 Dec;21(1):1–0.

7. Warren DL, Seifert SN. Ecological niche modeling in Maxent: the importance of model complexity and

the performance of model selection criteria. Ecol Appl. 2011; 21(2):335–42. https://doi.org/10.1890/10-

1171.1 PMID: 21563566

8. Alexander KA, Lewis BL, Marathe M, Eubank S, Blackburn JK. Modeling of wildlife-associated zoono-

ses: Applications and caveats. Vol. 12, Vector-Borne and Zoonotic Diseases. 2012. https://doi.org/10.

1089/vbz.2012.0987 PMID: 23199265

PLOS NEGLECTED TROPICAL DISEASES Spatial distribution of anthrax in southern Kenya

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009301 March 29, 2021 13 / 16

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009301.s001
https://doi.org/10.1371/journal.pntd.0005580
https://doi.org/10.1371/journal.pntd.0005580
http://www.ncbi.nlm.nih.gov/pubmed/28498841
https://doi.org/10.1371/journal.pone.0161576
https://doi.org/10.1371/journal.pone.0161576
http://www.ncbi.nlm.nih.gov/pubmed/27557120
https://doi.org/10.4269/ajtmh.18-0224
http://www.ncbi.nlm.nih.gov/pubmed/30105965
https://doi.org/10.1890/10-1171.1
https://doi.org/10.1890/10-1171.1
http://www.ncbi.nlm.nih.gov/pubmed/21563566
https://doi.org/10.1089/vbz.2012.0987
https://doi.org/10.1089/vbz.2012.0987
http://www.ncbi.nlm.nih.gov/pubmed/23199265
https://doi.org/10.1371/journal.pntd.0009301


9. Crisp MD, Trewick SA, Cook LG. Hypothesis testing in biogeography. Vol. 26, Trends in Ecology and

Evolution. 2011. https://doi.org/10.1016/j.tree.2010.11.005 PMID: 21146898

10. Blackburn JK. Integrating geographic information systems and ecological niche modeling into disease

ecology: a case study of Bacillus anthracis in the United States and Mexico. In: Emerging and Endemic

Pathogens. Springer; 2010. p. 59–88.

11. Walsh MG, de Smalen AW, Mor SM. Climatic influence on anthrax suitability in warming northern lati-

tudes. Sci Rep. 2018; 8(1):9269. https://doi.org/10.1038/s41598-018-27604-w PMID: 29915251

12. Kracalik IT, Kenu E, Ayamdooh EN, Allegye-Cudjoe E, Polkuu PN, Frimpong JA, et al. Modeling the

environmental suitability of anthrax in Ghana and estimating populations at risk: Implications for vacci-

nation and control. PLoS Negl Trop Dis. 2017; 11(10):e0005885. https://doi.org/10.1371/journal.pntd.

0005885 PMID: 29028799

13. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008; 77

(4):802–13. https://doi.org/10.1111/j.1365-2656.2008.01390.x PMID: 18397250

14. Breiman L. Random forests. Mach Learn. 2001; 45(1):5–32.

15. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distribu-

tions. Ecol Modell. 2006; 190(3–4):231–59.

16. Stockwell D. The GARP modelling system: problems and solutions to automated spatial prediction. Int J

Geogr Inf Sci. 1999; 13(2):143–58.

17. Leathwick JR, Elith J, Hastie T. Comparative performance of generalized additive models and multivari-

ate adaptive regression splines for statistical modelling of species distributions. Ecol Modell. 2006; 199

(2):188–96.

18. Steenkamp PJ. Ecological suitability modelling for anthrax in the Kruger National Park, South Africa.

University of Pretoria; 2013.

19. Carlson CJ, Kracalik IT, Ross N, Alexander KA, Hugh-Jones ME, Fegan M, et al. The global distribution

of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat Microbiol.

2019;1. https://doi.org/10.1038/s41564-018-0331-3 PMID: 30546101

20. Barro AS, Fegan M, Moloney B, Porter K, Muller J, Warner S, et al. Redefining the Australian anthrax

belt: Modeling the ecological niche and predicting the geographic distribution of Bacillus anthracis.

PLoS Negl Trop Dis. 2016; 10(6):e0004689. https://doi.org/10.1371/journal.pntd.0004689 PMID:

27280981

21. Chen W-J, Lai S-J, Yang Y, Liu K, Li X-L, Yao H-W, et al. Mapping the distribution of anthrax in mainland

China, 2005–2013. PLoS Negl Trop Dis. 2016; 10(4):e0004637. https://doi.org/10.1371/journal.pntd.

0004637 PMID: 27097318

22. Chikerema SM, Murwira A, Matope G, Pfukenyi DM. Spatial modelling of Bacillus anthracis ecological

niche in Zimbabwe. Prev Vet Med. 2013; 111(1–2). https://doi.org/10.1016/j.prevetmed.2013.04.006

PMID: 23726015

23. Kracalik IT, Malania L, Tsertsvadze N, Manvelyan J, Bakanidze L, Imnadze P, et al. Evidence of local

persistence of human anthrax in the country of Georgia associated with environmental and anthropo-

genic factors. PLoS Negl Trop Dis. 2013; 7(9). https://doi.org/10.1371/journal.pntd.0002388 PMID:

24040426

24. Carlson CJ. embarcadero: Species distribution modelling with Bayesian additive regression trees in R.

Methods Ecol Evol. 2020;

25. Albeare SM. Comparisons of Boosted Regression Tree, GLM And GAM Performance In The Standardi-

zation Of Yellowfin Tuna Catch-Rate Data From The Gulf Of Mexico Lonline Fishery. Thesis. 2009;

(December).

26. Hollings T, Robinson A, van Andel M, Jewell C, Burgman M. Species distribution models: A comparison

of statistical approaches for livestock and disease epidemics. PLoS One. 2017; 12(8):e0183626.

https://doi.org/10.1371/journal.pone.0183626 PMID: 28837685

27. Martı́nez-Rincón RO, Ortega-Garcı́a S, Vaca-Rodrı́guez JG. Comparative performance of generalized

additive models and boosted regression trees for statistical modeling of incidental catch of wahoo

(Acanthocybium solandri) in the Mexican tuna purse-seine fishery. Ecol Modell. 2012; 233:20–5.

28. Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH, et al. Presence-only

modelling using MAXENT: when can we trust the inferences? Methods Ecol Evol. 2013; 4(3):236–43.

29. KNBS. Kenya Integrated Household Budget Survey [Internet]. KNBS, editor. Kenya Integrated House-

hold Budget Survey. KNBS; 2016. Available from: http://statistics.knbs.or.ke/nada/index.php/catalog/8/

download/647

30. Gilbert M, Nicolas G, Cinardi G, Van Boeckel TP, Vanwambeke SO, Wint GRW, et al. Global cattle dis-

tribution in 2010 [Internet]. V3 ed. Harvard Dataverse; 2018. Available from: https://dataverse.harvard.

edu/dataset.xhtml?persistentId=10.7910/DVN/GIVQ75 PMID: 30375994

PLOS NEGLECTED TROPICAL DISEASES Spatial distribution of anthrax in southern Kenya

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009301 March 29, 2021 14 / 16

https://doi.org/10.1016/j.tree.2010.11.005
http://www.ncbi.nlm.nih.gov/pubmed/21146898
https://doi.org/10.1038/s41598-018-27604-w
http://www.ncbi.nlm.nih.gov/pubmed/29915251
https://doi.org/10.1371/journal.pntd.0005885
https://doi.org/10.1371/journal.pntd.0005885
http://www.ncbi.nlm.nih.gov/pubmed/29028799
https://doi.org/10.1111/j.1365-2656.2008.01390.x
http://www.ncbi.nlm.nih.gov/pubmed/18397250
https://doi.org/10.1038/s41564-018-0331-3
http://www.ncbi.nlm.nih.gov/pubmed/30546101
https://doi.org/10.1371/journal.pntd.0004689
http://www.ncbi.nlm.nih.gov/pubmed/27280981
https://doi.org/10.1371/journal.pntd.0004637
https://doi.org/10.1371/journal.pntd.0004637
http://www.ncbi.nlm.nih.gov/pubmed/27097318
https://doi.org/10.1016/j.prevetmed.2013.04.006
http://www.ncbi.nlm.nih.gov/pubmed/23726015
https://doi.org/10.1371/journal.pntd.0002388
http://www.ncbi.nlm.nih.gov/pubmed/24040426
https://doi.org/10.1371/journal.pone.0183626
http://www.ncbi.nlm.nih.gov/pubmed/28837685
http://statistics.knbs.or.ke/nada/index.php/catalog/8/download/647
http://statistics.knbs.or.ke/nada/index.php/catalog/8/download/647
https://dataverse.harvard.edu/dataset.xhtml?persistentId=10.7910/DVN/GIVQ75
https://dataverse.harvard.edu/dataset.xhtml?persistentId=10.7910/DVN/GIVQ75
http://www.ncbi.nlm.nih.gov/pubmed/30375994
https://doi.org/10.1371/journal.pntd.0009301


31. Hengl T, de Jesus JM, Heuvelink GBM, Gonzalez MR, Kilibarda M, Blagotić A, et al. SoilGrids250m:

Global gridded soil information based on machine learning. ISRIC, editor. PLoS One [Internet]. 2017;

12(2):e0169748. Available from: https://files.isric.org/soilgrids/data/recent https://doi.org/10.1371/

journal.pone.0169748 PMID: 28207752

32. Turner WC, Imologhome P, Havarua Z, Kaaya GP, Mfune JKE, Mpofu IDT, et al. Soil ingestion, nutrition

and the seasonality of anthrax in herbivores of Etosha National Park. Ecosphere. 2013; 4(1):1–19.

33. Mati BM. The influence of climate change on maize production in the semi-humid–semi-arid areas of

Kenya. J Arid Environ. 2000; 46(4):333–44.

34. McSweeney C, New M, Lizcano G. UNDP climate change country profiles: Kenya. UNDP, Nairobi;

2008.

35. Boria RA, Olson LE, Goodman SM, Anderson RP. Spatial filtering to reduce sampling bias can improve

the performance of ecological niche models. Ecol Modell. 2014; 275:73–7.

36. Joyner TA, Lukhnova L, Pazilov Y, Temiralyeva G, Hugh-Jones ME, Aikimbayev A, et al. Modeling the

potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan.

PLoS One. 2010; 5(3):e9596. https://doi.org/10.1371/journal.pone.0009596 PMID: 20231894

37. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. Selecting pseudo-absences for species distribution

models: how, where and how many? Methods Ecol Evol. 2012; 3(2):327–38.

38. O’brien RM. A caution regarding rules of thumb for variance inflation factors. Qual Quant. 2007; 41

(5):673–90.

39. Quantum GIS. Development Team.(2018). Quantum GIS geographic information system. Open Source

Geospatial Foundation Project. 2018.

40. Team RC. R: A language and environment for statistical computing; 2015. 2018.

41. Ridgeway G, Southworth MH, RUnit S. Package ‘gbm.’ Viitattu. 2013; 10(2013):40.
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