Abstract

Electrical transport properties of superconducting materials are a widely studied area in superconductivity. In this study, the role of holes in determination of resistivity, Hall coefficient and Hall angle has been explored using a two-band model due to co-existence of holes and electrons in high-Tc YB2Cu3O7– δ and Bi2Sr2CaCu2O8+ δ . The results obtained from this study show that hole resistivity (ρp) decreases with increase in the ratio n p u $\rho \rho$ = while the Hall coefficient (RH) is non-linearly dependent on the hole resistivity (ρp). An increase in the hole scattering rate ($p \gamma$) causes a drop in the Hall scattering angle (θ H).