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Abstract

In summability theory, different classes of matrices have been in-
vestigated and characterized. There are various types of summability
methods e.g. Nörlund means, Cesaro, Riesz, Euler, Abel and many
others. The spectrum of an operator plays a crucial role in the devel-
opment of Tauberian theory for the operator and Mercerian theorems
which are used to determine the limit or sum of a convergent sequence
or series.

In this paper, the spectrum and eigenvalues of a special Nörlundma-
trix as a bounded operator on the sequence space c is investigated and de-
termined. This is achieved by applying Banach space theorems of func-
tional analysis as well as summability methods of summability theory. It
is shown that the spectrum consist of the set {λ ∈ C :

∣∣λ− 1
3

∣∣ ≤ 1
3}∪{1}.

Mathematics Subject Classification: 47B06
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Notations

R+ - will denote the set of positive real numbers;R - the set of real numbers;C
- the set of complex numbers;‖.‖- norm of; →- tend to; ∅- empty set; c- the
set of all sequences which converge; `p(0 < p < ∞) - sequences such that
∞∑
k=0

|x|p <∞ .

1 Introduction
Nörlund mean matrix is an infinite triangular matrix A = (ank) with

ank =

{
pn−k

Pn

0,

0 ≤ k ≤ n

k > n
(1)

, where p0 > 0, pk ≥ 0 for all k ≥ 1 and Pn =
n∑
k=0

pk. In this paper we let

p0 = p1 = p2 = m, p3 = p4 = p5 · · · = 0,m ∈ Z, then the matrix is given by

A =


1 0 0 0 · · ·
1
2

1
2

0 0 · · ·
1
3

1
3

1
3

0 · · ·
0 1

3
1
3

1
3
· · ·

0 0 1
3

1
3
· · ·

· · ·

 (2)

Theorem 1.1. A ∈ (c, c) if and only if

i. lim
n→∞

ank = ak for each fixed k, k = 0, 1, 2, . . .

ii. lim
n→∞

∞∑
k=0

ank = a as n→∞

iii. supn≥0{
∞∑
k=0

|ank|} <∞, [7].

Theorem 1.2. A ∈ (l1, l1) if and only if

i.
∞∑
n=0

|ank| <∞ for each fixed k

ii. supk{
∞∑
n=0

|ank|} <∞, [2].
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Definition 1.3. (Adjoint Operator T ∗)

The adjoint T ∗of linear operator T ∈ B(X, Y ) is the mapping from Y ∗to
X∗defined by T ∗ ◦ f = f ◦ T, f ∈ Y ∗

Theorem 1.4. T ∗ is linear and bounded. Moreover, ‖T ∗‖ = ‖T‖, [4].

Theorem 1.5. A linear Operator T ∈ B(X, Y ) has a bounded inverse T−1
defined on all Y if and only if its adjoint T ∗has a bounded inverse (T ∗)−1

defined on all of X∗. When these inverses exist, (T−1)∗ = (T ∗)−1, [8, 10].

Definition 1.6. (Resolvent Operator, Rλ = (T − λI)−1)

Let X be a non - empty Banach space and suppose that T : X → X .
With T , associated is the operator Tλ = T −λI, λ ∈ C,where I is the identity
operator on X. If Tλ = T − λI has an inverse, then it is denoted by Rλ(T ) or
simply Rλ and call it the resolvent operator of T .

Definition 1.7. (Resolvent set ρ(T ), spectrum σ(T ))

Let X be a non - empty Banach space and suppose that T : X → X . The
resolvent set ρ(T ) of T is the set of complex numbers λfor which (T − λI)−1
exist as a bounded operator with the domain X. The spectrum σ(T ) of T is
the compliment of ρ(T ) in C.

Theorem 1.8. The resolvent set ρ(T ) of a bounded linear operator T on a
Banach space X is open; hence the spectrum σ(T ) of T is closed, [1, 4].

Theorem 1.9. If X is any Banach space and T ∈ B(X), then σ(T ) 6= ∅,
[1, 4].

The spectrum σ(T ) of a bounded linear operator T : X → X on a Banach
space X is compact and lies in the disk given by:

|λ| = ‖T‖ (3)

[4].

Theorem 1.10. Let T ∈ B(X), where X is any Banach space, then the
spectrum of T ∗is identical to the spectrum of T . Furthermore, Rλ(T

∗) =
(Rλ(T ))

∗for λ ∈ ρ(T ) = ρ(T ∗), [8] and [10].
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2 The spectrum of A operator on c

We determine the spectrum of matrix A as an operator on c The matrix A =
1 0 0 0 0 · · ·
1
2

1
2

0 0 0 · · ·
1
3

1
3

1
3

0 0 · · ·
0 1

3
1
3

1
3

0 · · ·
0 0 1

3
1
3

1
3
· · ·

· · ·


Corollary 2.1. A ∈ B(c)

Proof. i. lim
n→∞

ank = 0 for each fixed k, k = 0, 1, 2, . . .

ii. lim
n→∞

∞∑
k=0

ank = 1 as n→∞ iii. ‖A‖ = supn≥0{
∞∑
k=0

|ank|} = 1 <∞

2.1 The Eigenvalues of A operator on c

Theorem 2.2. The eigenvalue of A ∈ B(c) is the singleton set {1}

Proof. Solving the system Ax = λx, x 6= θ in c and λ ∈ C, then
1 0 0 0 0 · · ·
1
2

1
2

0 0 0 · · ·
1
3

1
3

1
3

0 0 · · ·
0 1

3
1
3

1
3

0 · · ·
0 0 1

3
1
3

1
3
· · ·

· · ·





x0
x1
x2
x3
x4
...


= λ



x0
x1
x2
x3
x4
...


(4)

which gives
x0 = λx0

1
2
x0 +

1
2
x1 = λx1

1
3
x0 +

1
3
x1 +

1
3
x2 = λx2

1
3
x1 +

1
3
x2 +

1
3
x3 = λx3

...
1
3
xn−2 +

1
3
xn−1 +

1
3
xn = λxn

...

(5)

Solving equation 5, if x0 is the first non zero entry of x, then λ = 1. But λ = 1
implies x0 = x1 = x2 = · · · = xn = · · · , which shows that x is in the span of
δ = (1, 1, 1, 1, · · · ) which tends to 1 as n tends to infinity. Therefore λ = 1 is
an eigenvalue of A ∈ B(c). When x1 is the first non zero entry of x, λ = 1

2
.

But λ = 1
2
implies x0 = 0, x2 = 2x1, x3 = 6x1, x4 = 16x1, x5 = 44x1, · · ·



A special Nörlund means and its spectrum 651

which shows that x is spanned by {0, 1, 2, 6, 16, 44, · · · } an increasing sequence
which is not bounded above, hence does not converge as n tends to infinity. If
xn+2 is the first non zero entry for n = 0, 1, 2, 3, · · · , then λ = 1

3
, solving the

system gives xn = 0 for n = 0, 1, 2, 3, · · · which is a contradiction hence λ = 1
3

cannot be an eigenvalue.

2.2 The Eigenvalues of A∗ operator on `1

Theorem 2.3. Let A : c → c be a linear map and define A∗ : c∗ → c∗ i,e
A∗ : `1 → `1by A∗ (g) = g ◦ A, g ∈ c∗ ≡ `1.Then both A and A∗must be given
by a matrix. Moreover A∗ : `1 → `1is given by the matrix,

A∗ =

(
χ (limA) (vn)

∞
0

(ak)
∞
0 At

)
(6)

[5].

Corollary 2.4. Let A : c→ c. Then A∗ ∈ B (`1) and

A∗ =


1 0 0 0 0 · · ·
0 1 1

2
1
3

0 · · ·
0 0 1

2
1
3

1
3
· · ·

0 0 0 1
3

1
3
· · ·

0 0 0 0 1
3
· · ·

· · ·

 (7)

Proof. By theorem 2.3

A∗ =

(
χ (limA) (vn)

∞
0

(ak)
∞
0 At

)
(8)

where χ (limA) = limA (δ)−
∞∑
k=0

limA δ
k is called the characteristic of a ma-

trix A δ = {1, 1, 1, 1, . . .}, limA (δ) = 1 and δk = {0, 0, 0, 0, . . . , 1, 0, 0 . . .},
having zeros with 1 in the kthposition, limA δ

k = 0 and
∑

limA δ
k = 0. Hence

χ (limA) = 1− 0 = 1

vn = χ(Pn◦T ) = (Pn◦T )δ−
∞∑
k=0

(Pn◦T )δk but for matrix A, (Pn◦T )δ = 1, ∀n

and
∞∑
k=0

(Pn ◦ T )δk = 1 i.e

v0 = 1− (1 + 0 + 0 + 0 + · · · ) = 1− 1 = 0
v1 = 1−

(
1
2
+ 1

2
+ 0 + 0 + · · ·

)
= 1− 1 = 0

v2 = 1−
(
1
3
+ 1

3
+ 1

3
+ 0 + · · ·

)
= 1− 1 = 0

v3 = 1−
(
0 + 1

3
+ 1

3
+ 1

3
+ 0 + 0 · · ·

)
= 1− 1 = 0

...
vn = 0, n ≥ 0

(9)
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hence the matrix becomes (
1 θ
θ AT

)
(10)

Theorem 2.5. The eigenvalues of A∗ ∈ B(`1) is the set {λ ∈ C :
∣∣λ− 1

3

∣∣ < 1
3
}

Proof. Consider the system A∗x = λx, x 6= θ in `1 and λ ∈ C,

1 0 0 0 0 0 · · ·
0 1 1

2
1
3

0 0 · · ·
0 0 1

2
1
3

1
3

0 · · ·
0 0 0 1

3
1
3

1
3
· · ·

0 0 0 0 1
3

1
3
· · ·

0 0 0 0 0 1
3
· · ·

· · ·





x0
x1
x2
x3
x4
x5
...


= λ



x0
x1
x2
x3
x4
x5
...


(11)

which gives
x0 = λx0

x1 +
1
2
x2 +

1
3
x3 = λx1

1
2
x2 +

1
3
x3 +

1
3
x4 = λx2

1
3
x3 +

1
3
x4 +

1
3
x5 = λx3

1
3
x4 +

1
3
x5 +

1
3
x6 = λx4

· · ·
1
3
xn−2 +

1
3
xn−1 +

1
3
xn = λxn−2, for n ≥ 5

(12)

, solving the system gives

xn = 3(λ− 1
3
)xn−2 − xn−1, n ≥ 5, or

for n odd, xn = 3
n−1
2
−1(λ− 1

3
)
n−1
2
−1x3−

n−1
2
−2∑

k=0

3k(λ− 1
3
)kxn−(2k+1), n ≥ 5

for n even, xn = 3
n
2
−2(λ− 1

3
)
n
2
−2x4−

n
2
−3∑

k=0

3k(λ− 1
3
)kxn−(2k+1) n ≥ 6

Hence
∞∑

n=0
|xn| = |x0|+|x1|+|x2|+|x3|+|x4|+

∞∑
n = 6
n even

∣∣∣∣∣3n
2−2(λ− 1

3 )
n
2−2x4−

n
2−3∑
k=0

3k(λ− 1
3 )

kxn−(2k+1)

∣∣∣∣∣+
∞∑

n = 5
n odd

∣∣∣∣∣3n−1
2 −1(λ− 1

3 )
n−1
2 −1x3−

n−1
2 −2∑
k=0

3k(λ− 1
3 )

kxn−(2k+1)

∣∣∣∣∣
≤

4∑
n=0
|xn|+

∞∑
n = 6
n even

∣∣3n
2−2(λ− 1

3 )
n
2−2x4

∣∣+ ∞∑
n = 5
n odd

∣∣∣3n−1
2 −1(λ− 1

3 )
n−1
2 −1x3

∣∣∣+
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∞∑
n = 6
n even

n
2
−3∑

k=0

∣∣∣∣3k(λ− 1

3
)kxn−(2k+1)

∣∣∣∣+ ∞∑
n = 5
n odd

n−1
2
−2∑

k=0

∣∣∣∣3k(λ− 1

3
)kxn−(2k+1)

∣∣∣∣ (13)

This is a geometric series with the common ratio, r = 3(λ − 1
3
). This series

converge only if |r| < 1, that is if
∣∣3(λ− 1

3
)
∣∣ = 3

∣∣λ− 1
3

∣∣ < 1 or
∣∣λ− 1

3

∣∣ < 1
3
.

2.3 The spectrum of A operator on c

Corollary 2.6. For matrix A, we have

A− Iλ =


1− λ 0 0 0 0 · · ·

1
2

1
2
− λ 0 0 0 · · ·

1
3

1
3

1
3
− λ 0 0 · · ·

0 1
3

1
3

1
3
− λ 0 · · ·

0 0 1
3

1
3

1
3
− λ · · ·

· · ·

 (14)

M = (A−Iλ)−1is given by mnk =



1
ann

, n = k

(−1)n−k∏n
j=k ann

D
(k)
n−k, (0 ≤ k ≤ n− 1), (n, k ∈ N0)

0, (k > n)

(15)
[9] where

D
(k)
n−k =

∣∣∣∣∣∣∣∣∣∣∣

a1k a1k+1 0 0 · · · 0
a2k a2k+1 a2k+2 0 · · · 0
0 a3k+1 a3k+2 a3k+3 0
... 0

. . . . . . ...

0
... . . . . . . . . . an,n+k−1

∣∣∣∣∣∣∣∣∣∣∣
(16)

for k=0, D(0)
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

1
2
− λ 0 0 · · · 0

1
3

1
3

1
3
− λ 0 · · · 0

0 1
3

1
3

1
3
− λ · · · 0

0 0 1
3

1
3

· · · 0
...

...
...

... . . . 0
0 0 0 · · · 1

3
1
3

∣∣∣∣∣∣∣∣∣∣∣∣∣
, which is an n × n

tridiagonal matrix.
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for k ≥ 1, D(k)
n−k =

∣∣∣∣∣∣∣∣∣∣∣

1
3

1
3
− λ 0 · · · 0

1
3

1
3

1
3
− λ · · · 0

0 1
3

1
3

· · · 0
...

...
... . . . 0

0 0 · · · 1
3

1
3

∣∣∣∣∣∣∣∣∣∣∣
, this is an n − k × n − k

tridiagonal matrix.
Substituting in equation 15 gives matrix M as ,

M =



1
1−λ 0 0 0 0 · · ·
−1

2(1−λ)( 1
2
−λ)

1
1
2
−λ 0 0 0 · · ·

{ 1
2
−( 1

2
−λ)}

3(1−λ)( 1
2
−λ)( 1

3
−λ)

−1
3( 1

2
−λ)( 1

3
−λ)

1
1
3
−λ 0 0 · · ·

−{ 1
2
(1−(1−3λ))−( 1

2
−λ)

32(1−λ)( 1
2
−λ)( 1

3
−λ)2

(1−(1−3λ)
32( 1

2
−λ)( 1

3
−λ)2

−1
32( 1

3
−λ)2

1
1
3
−λ 0 · · ·

...
...

...
...

... · · ·


(17)

that is
for k = 0, m00 =

1
1−λ , mn0 =

(−1)n
(1−λ)( 1

2
−λ)( 1

3
−λ)n−1D

(0)
n =

(−1)n( 1
3
D

(0)
n−1−

1
3
( 1
3
−λ)D0

n−2)

(1−λ)( 1
2
−λ)( 1

3
−λ)n−1 ,

for k = 1,m11 =
1

1
2
−λ ,mn1 =

(−1)n−1

( 1
2
−λ)( 1

3
−λ)n−1D

(1)
n−1 =

(−1)n−1( 1
3
D

(1)
n−2−

1
3
( 1
3
−λ)D(1)

n−3)

( 1
2
−λ)( 1

3
−λ)n−1

for

k ≥ 2,mnn =
1

1
3
− λ

,mnk =
(−1)n−k

(1
3
− λ)n−k+1

D
(k)
n−k =

(−1)n−k(1
3
D

(k)
n−k−1 − 1

3
(1
3
− λ)D(k)

n−k−2)

(1
3
− λ)n−k+1

(18)
Direct computations shows that (A− Iλ)M =M (A− Iλ) = I , hence M =
(A− Iλ)−1

Theorem 2.7. The spectrum σ(A) of A ∈ B(c) is the set {λ ∈ C :
∣∣λ− 1

3

∣∣ ≤
1
3
} ∪ {1}

Proof. We show that (A− Iλ)−1 ∈ B(c) for all λ ∈ C such that
∣∣λ− 1

3

∣∣ > 1
3

for k = 0, D
(0)
1 = 1

2

D
(0)
2 = 1

2
(1
3
)− (1

2
− λ)1

3
= 1

3
{1
2
− (1

2
− λ)}

D
(0)
3 = 1

32
{1
2
− 1

2
(1− 3λ)− (1

2
− λ)} = 1

32
{1
2
(1− (1− 3λ))− (1

2
− λ)}

D
(0)
4 = 1

33
{1
2
− 2

2
(1− 3λ)− (1

2
− λ)− (1

2
− λ)(1− 3λ)} = 1

33
{1
2
(1− 2(1− 3λ))−

(1
2
− λ)(1− (1− 3λ))}

D
(0)
5 = 1

34
{1
2
− 3

2
(1− 3λ)+ 1

2
(1− 3λ)2− (1

2
−λ)+ 2(1

2
−λ)(1− 3λ)} = 1

34
{1
2
(1−

3(1− 3λ) + (1− 3λ)2)− (1
2
− λ)(1 + 2(1− 3λ)}
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D
(0)
n = 1

3n−1

{
1
2

(
n
2
−1∑

k=0

ak(1− 3λ)k

)
− (1

2
− λ)

(
n
2
−1∑

k=0

bk(1− 3λ)k

)}
when n

is even, and

D(0)
n =

1

3n−1

1

2

 n−1
2∑

k=0

ak(1− 3λ)k

− (
1

2
− λ)

 n−1
2∑

k=0

bk−1(1− 3λ)k−1


(19)

when n is odd, where ak′s and bk′s are integers.
Substituting equation 15 gives the nth entry as

mn0 =
(−1)n

(1−λ)( 1
2
−λ)( 1

3
−λ)n−1D

(0)
n =

(−1)n
 1

2

n
2−1∑
k=0

ak(1−3λ)k
−( 1

2
−λ)

n
2−1∑
k=0

bk(1−3λ)k


3n−1(1−λ)( 1
2
−λ)( 1

3
−λ)n−1 ,when

n is even, and

mn0 =
(−1)n

(1−λ)( 1
2
−λ)( 1

3
−λ)n−1D

(0)
n =

(−1)n
 1

2

n−1
2∑

k=0
ak(1−3λ)k

−( 1
2
−λ)

n−1
2∑

k=0
bk−1(1−3λ)k−1


3n−1(1−λ)( 1

2
−λ)( 1

3
−λ)n−1 ,when

n is odd
as n → ∞, the colums mno → 0 only if the denominator tends to ∞and the
denominator tends to ∞ provided

∣∣3(1
3
− λ)

∣∣ > 1.
Similarly for k ≥ 1,the denominator tends to ∞ provided

∣∣3(1
3
− λ)

∣∣ > 1
or
∣∣1
3
− λ
∣∣ > 1

3

Which proves theorem 1.1 (i). Summing the entries of the matrix 17 along
the nth row

∞∑
k=0

|mnk| =
∣∣∣ (−1)nD(0)

n

(1−λ)( 1
2
−λ)( 1

3
−λ)n−1

∣∣∣+∣∣∣∣ (−1)n−1D
(1)
n−1

( 1
2
−λ)( 1

3
−λ)n−1

∣∣∣∣+ n∑
k=2

∣∣∣∣ (−1)n−k( 1
3
D

(k)
n−k−1−

1
3
( 1
3
−λ)D(k)

n−k−2)

( 1
3
−λ)n−k+1

∣∣∣∣ =
sn say for n ≥ 0 supn{sn} ≤ K < ∞, provided λ ∈ C such that

∣∣1
3
− λ
∣∣ > 1

3

, hence satisfies part (iii). For part (ii), we have M = (A− Iλ)−1 and

(A− Iλ) (A− Iλ)−1 = I. Now Mδ =
n∑
k=0

mnk, where δ = (1, 1, , 1 · · · )T .

Also (A− Iλ)−1 (A− Iλ) = M (A− Iλ) = I , multiplying by δ on both sides
M (A− Iλ) δ = Iδ. Since Aδ = δ, we haveM (δ − λδ) = δ orM (1− λ) δ = δ.
Therefore

Mδ =
1

1− λ
δ (20)

That is
n∑
k=0

mnk =
1

1− λ
(21)

hence lim
n

∞∑
k=0

mnk = lim
n

1
1−λ = 1

1−λ <∞ provided λ ∈ C such that λ 6= 1 .
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Therefore (A − Iλ)−1 ∈ B(c) if λ ∈ C such that
∣∣1
3
− λ
∣∣ > 1

3
. Which

implies (A−Iλ)−1 /∈ B(c) if λ ∈ C such that
∣∣1
3
− λ
∣∣ ≤ 1

3
. Clearly, when λ = 1,

column 0 is infinite therefore the inverse does not exist. Hence σ(A) ={λ ∈
C :
∣∣λ− 1

3

∣∣ ≤ 1
3
} ∪ {1}.
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